伪共享

一、伪共享的定义:

伪共享的非标准定义为:缓存系统中是以缓存行(cache line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。

二、CPU缓存机制

CPU 缓存的百度百科定义为:

CPU 缓存(Cache Memory)是位于 CPU 与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多。
高速缓存的出现主要是为了解决 CPU 运算速度与内存读写速度不匹配的矛盾,因为 CPU 运算速度要比内存读写速度快很多,这样会使 CPU 花费很长时间等待数据到来或把数据写入内存。
在缓存中的数据是内存中的一小部分,但这一小部分是短时间内 CPU 即将访问的,当 CPU 调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。

CPU 和主内存之间有好几层缓存,因为即使直接访问主内存也是非常慢的。如果你正在多次对一块数据做相同的运算,那么在执行运算的时候把它加载到离 CPU 很近的地方就有意义了。

按照数据读取顺序和与 CPU 结合的紧密程度,CPU 缓存可以分为一级缓存,二级缓存,部分高端 CPU 还具有三级缓存。每一级缓存中所储存的全部数据都是下一级缓存的一部分,越靠近 CPU 的缓存越快也越小。所以 L1 缓存很小但很快(译注:L1 表示一级缓存),并且紧靠着在使用它的 CPU 内核。L2 大一些,也慢一些,并且仍然只能被一个单独的 CPU 核使用。L3 在现代多核机器中更普遍,仍然更大,更慢,并且被单个插槽上的所有 CPU 核共享。最后,你拥有一块主存,由全部插槽上的所有 CPU 核共享。拥有三级缓存的的 CPU,到三级缓存时能够达到 95% 的命中率,只有不到 5% 的数据需要从内存中查询。

多核机器的存储结构如下图所示:

当 CPU 执行运算的时候,它先去 L1 查找所需的数据,再去 L2,然后是 L3,最后如果这些缓存中都没有,所需的数据就要去主内存拿。走得越远,运算耗费的时间就越长。所以如果你在做一些很频繁的事,你要确保数据在 L1 缓存中。

Martin Thompson 给出了一些缓存未命中的消耗数据,如下所示:

三、缓存行

缓存系统中是以缓存行(cache line)为单位存储的。缓存行通常是 64 字节(译注:本文基于 64 字节,其他长度的如 32 字节等不适本文讨论的重点),并且它有效地引用主内存中的一块地址。例如一个 的 long 类型是 8 字节,因此在一个缓存行中可以存 8 个 long 类型的变量。所以,如果你访问一个 long 数组,当数组中的一个值被加载到缓存中,它会额外加载另外 7 个,以致你能非常快地遍历这个数组。事实上,你可以非常快速的遍历在连续的内存块中分配的任意数据结构。而如果你在数据结构中的项在内存中不是彼此相邻的(如链表),你将得不到免费缓存加载所带来的优势,并且在这些数据结构中的每一个项都可能会出现缓存未命中。

如果存在这样的场景,有多个线程操作不同的成员变量,但是相同的缓存行,这个时候会发生什么?。没错,伪共享(False Sharing)问题就发生了!有张 Disruptor 项目的经典示例图,如下:

 

上图中,一个运行在处理器 core1上的线程想要更新变量 X 的值,同时另外一个运行在处理器 core2 上的线程想要更新变量 Y 的值。但是,这两个频繁改动的变量都处于同一条缓存行。两个线程就会轮番发送 RFO 消息,占得此缓存行的拥有权。当 core1 取得了拥有权开始更新 X,则 core2 对应的缓存行需要设为 I 状态。当 core2 取得了拥有权开始更新 Y,则 core1 对应的缓存行需要设为 I 状态(失效态)。轮番夺取拥有权不但带来大量的 RFO 消息,而且如果某个线程需要读此行数据时,L1 和 L2 缓存上都是失效数据,只有 L3 缓存上是同步好的数据。从前一篇我们知道,读 L3 的数据非常影响性能。更坏的情况是跨槽读取,L3 都要 miss,只能从内存上加载。

表面上 X 和 Y 都是被独立线程操作的,而且两操作之间也没有任何关系。只不过它们共享了一个缓存行,但所有竞争冲突都是来源于共享。

因此,当两个以上CPU都要访问同一个缓存行大小的内存区域时,就会引起冲突,这种情况就叫“共享”。但是,这种情况里面又包含了“其实不是共享”的“伪共享”情况。比如,两个处理器各要访问一个word,这两个word却存在于同一个cache line大小的区域里,这时,从应用逻辑层面说,这两个处理器并没有共享内存,因为他们访问的是不同的内容(不同的word)。但是因为cache line的存在和限制,这两个CPU要访问这两个不同的word时,却一定要访问同一个cache line块,产生了事实上的“共享”。显然,由于cache line大小限制带来的这种“伪共享”是我们不想要的,会浪费系统资源。

四、如何避免伪共享? 

1)让不同线程操作的对象处于不同的缓存行。

可以进行缓存行填充(Padding) 。例如,如果一条缓存行有 64 字节,而 Java 程序的对象头固定占 8 字节(32位系统)或 12 字节( 64 位系统默认开启压缩, 不开压缩为 16 字节),所以我们只需要填 6 个无用的长整型补上6*8=48字节,让不同的 VolatileLong 对象处于不同的缓存行,就避免了伪共享( 64 位系统超过缓存行的 64 字节也无所谓,只要保证不同线程不操作同一缓存行就可以)。

2)使用编译指示,强制使每一个变量对齐。

强制使对象按照缓存行的边界对齐。例如可以使数据按64位对齐,那么一个缓存行只有一个可操作对象,这样发生伪共享之后,也只是对应缓存行的数据变化,并不影响其他的对象。

 

 参考:

https://www.cnblogs.com/cyfonly/p/5800758.html

https://www.cnblogs.com/RunForLove/p/5624390.html

你可能感兴趣的:(计算机操作系统)