poj3384Feng Shui(半平面交)

链接

将边长向内推进r,明显这样把第一个圆的圆心放在新的边长是肯定是最优的,与原本边相切,然后再找新多边上的最远的两点即为两圆心。

  1 #include <iostream>

  2 #include<cstdio>

  3 #include<cstring>

  4 #include<algorithm>

  5 #include<stdlib.h>

  6 #include<vector>

  7 #include<cmath>

  8 #include<queue>

  9 #include<set>

 10 using namespace std;

 11 #define N 2010

 12 #define LL long long

 13 #define INF 0xfffffff

 14 const double eps = 1e-8;

 15 const double pi = acos(-1.0);

 16 const double inf = ~0u>>2;

 17 const int MAXN=1550;

 18 int m;

 19 double r;

 20 int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数

 21 struct point

 22 {

 23     double x,y;

 24     point(double x=0,double y=0):x(x),y(y) {}

 25 };

 26 typedef point pointt;

 27 pointt operator -(point a,point b)

 28 {

 29     return point(a.x-b.x,a.y-b.y);

 30 }

 31 point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点

 32 void getline(point x,point y,double &a,double &b,double   &c) //两点x、y确定一条直线a、b、c为其系数

 33 {

 34     a = y.y - x.y;

 35     b = x.x - y.x;

 36     c = y.x * x.y - x.x * y.y;

 37 }

 38 void initial()

 39 {

 40     for(int i = 1; i <= m; ++i)p[i] = points[i];

 41     p[m+1] = p[1];

 42     p[0] = p[m];

 43     cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数

 44 }

 45 point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点

 46 {

 47     double u = fabs(a * x.x + b * x.y + c);

 48     double v = fabs(a * y.x + b * y.y + c);

 49     point pt;

 50     pt.x=(x.x * v + y.x * u) / (u + v);

 51     pt.y=(x.y * v + y.y * u) / (u + v);

 52     return  pt;

 53 }

 54 void cut(double a,double b ,double c)

 55 {

 56     curCnt = 0;

 57     for(int i = 1; i <= cCnt; ++i)

 58     {

 59         if(a*p[i].x + b*p[i].y + c >= 0)q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在,

 60         //故应该接着判断

 61         else

 62         {

 63             if(a*p[i-1].x + b*p[i-1].y + c > 0) //如果p[i-1]在直线的右侧的话,

 64             {

 65                 //则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少)

 66                 q[++curCnt] = intersect(p[i],p[i-1],a,b,c);

 67             }

 68             if(a*p[i+1].x + b*p[i+1].y + c > 0) //原理同上

 69             {

 70                 q[++curCnt] = intersect(p[i],p[i+1],a,b,c);

 71             }

 72         }

 73     }

 74     for(int i = 1; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中

 75     p[curCnt+1] = q[1];

 76     p[0] = p[curCnt];

 77     cCnt = curCnt;

 78 }

 79 double dis(point a)

 80 {

 81     return sqrt(a.x*a.x+a.y*a.y);

 82 }

 83 void solve(int r)

 84 {

 85     //注意:默认点是顺时针,如果题目不是顺时针,规整化方向

 86     initial();

 87     for(int i = 1; i <= m; ++i)

 88     {

 89         point ta, tb, tt;

 90         tt.x = points[i+1].y - points[i].y;

 91         tt.y = points[i].x - points[i+1].x;

 92         double k = r*1.0 / sqrt(tt.x * tt.x + tt.y * tt.y);

 93         tt.x = tt.x * k;

 94         tt.y = tt.y * k;

 95         ta.x = points[i].x + tt.x;

 96         ta.y = points[i].y + tt.y;

 97         tb.x = points[i+1].x + tt.x;

 98         tb.y = points[i+1].y + tt.y;

 99         double a,b,c;

100         getline(ta,tb,a,b,c);

101         cut(a,b,c);

102     }

103     double ans = -1;

104     point p1, p2;

105     int i,j;

106     for(i  = 1; i <= curCnt ; i++)

107         for(j = i ; j<=curCnt ; j++)

108         {

109             if(ans<dis(p[i]-p[j]))

110             {

111                 ans = dis(p[i]-p[j]);

112                 p1 = p[i];

113                 p2 = p[j];

114             }

115         }

116     printf("%.4f %.4f %.4f %.4f\n",p1.x,p1.y,p2.x,p2.y);

117 }

118 /*void GuiZhengHua(){

119      //规整化方向,逆时针变顺时针,顺时针变逆时针

120     for(int i = 1; i < (m+1)/2; i ++)

121       swap(points[i], points[m-i]);

122 }*/

123 int main()

124 {

125     int r,i;

126     while(scanf("%d%d",&m,&r)!=EOF)

127     {

128         for(i  = 1; i <= m ; i++)

129             scanf("%lf%lf",&points[i].x,&points[i].y);

130         points[m+1] = points[1];

131         solve(r);

132     }

133     return 0;

134 }
View Code

 

你可能感兴趣的:(poj)