MongoDB聚合运算符:$documentNumber

文章目录

    • 语法
    • 用法
    • 举例
      • 每个州的文档编号
      • 重复值、空值和缺失值的文档编号

$documentNumber聚合运算符返回$setWindowFields聚合阶段文档在分区中的位置。从版本5.0开始支持。

语法

{ $documentNumber: { } }

$documentNumber聚合运算符没有参数。

用法

  • $setWindowFields阶段的sortBy字段决定了文档的编号。
  • $documentNumber返回文档在分区中位置的唯一数字,即便是sortBy字段的值重复也会返回唯一值。
  • $documentNumber只能应用于$setWindowFields阶段
  • $documentNumber包括了sortBy字段为null或缺失的文档。
  • $documentNumber$rank$denseRank返回文档的位置都基于sortBy字段的值。
  • $documentNumber$rank$denseRank的区别在于对sortBy字段重复值的处理规则不同。
    • $rank$denseRank对于排序字段相同值的文档会返回相同的位置(称为排名)
    • $documentNumber返回文档的唯一位置(称为文档编号)

举例

每个州的文档编号

使用下面的脚本创建cakeSales集合,包含了蛋糕在加利福尼亚州(CA)和华盛顿州(WA)的销售情况:

db.cakeSales.insertMany( [
   { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
     state: "CA", price: 13, quantity: 120 },
   { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
     state: "WA", price: 14, quantity: 140 },
   { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
     state: "CA", price: 12, quantity: 145 },
   { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
     state: "WA", price: 13, quantity: 104 },
   { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
     state: "CA", price: 41, quantity: 162 },
   { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
     state: "WA", price: 43, quantity: 134 }
] )

下面的聚合脚本在$setWindowFields阶段使用$documentNumber输出每个州蛋糕销售文档的编号:

db.cakeSales.aggregate( [
   {
      $setWindowFields: {
         partitionBy: "$state",
         sortBy: { quantity: -1 },
         output: {
            documentNumberForState: {
               $documentNumber: {}
            }
         }
      }
   }
] )

在本例中:

  • partitionBy: "$state"对集合文档按照state字段进行分区,共有CAWA两个州。
  • sortBy: { quantity: -1 }根据quantity对文档进行逆序排序,quantity最大的在最前面
  • output将文档编号的值赋予字段documentNumberForState,并且在所在州中唯一

结果如下:

{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
  "state" : "CA", "price" : 41, "quantity" : 162, "documentNumberForState" : 1 }
{ "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
  "state" : "CA", "price" : 12, "quantity" : 145, "documentNumberForState" : 2 }
{ "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
  "state" : "CA", "price" : 13, "quantity" : 120, "documentNumberForState" : 3 }
{ "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
  "state" : "WA", "price" : 14, "quantity" : 140, "documentNumberForState" : 1 }
{ "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
  "state" : "WA", "price" : 43, "quantity" : 134, "documentNumberForState" : 2 }
{ "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
  "state" : "WA", "price" : 13, "quantity" : 104, "documentNumberForState" : 3 }

重复值、空值和缺失值的文档编号

创建一个cakeSalesWithDuplicates集合:

db.cakeSalesWithDuplicates.insertMany( [
   { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
     state: "CA", price: 13, quantity: 120 },
   { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
     state: "WA", price: 14, quantity: 140 },
   { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
     state: "CA", price: 12, quantity: 145 },
   { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
     state: "WA", price: 13, quantity: 104 },
   { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
     state: "CA", price: 41, quantity: 162 },
   { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
     state: "WA", price: 43, quantity: 134 },
   { _id: 6, type: "strawberry", orderDate: new Date("2020-01-08T06:12:03Z"),
     state: "WA", price: 41, quantity: 134 },
   { _id: 7, type: "strawberry", orderDate: new Date("2020-01-01T06:12:03Z"),
     state: "WA", price: 34, quantity: 134 },
   { _id: 8, type: "strawberry", orderDate: new Date("2020-01-02T06:12:03Z"),
     state: "WA", price: 40, quantity: 134 },
   { _id: 9, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"),
     state: "CA", price: 39, quantity: 162 },
   { _id: 10, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"),
     state: "CA", price: 39, quantity: null },
   { _id: 11, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"),
     state: "CA", price: 39 }
] )

在集合中:

  • 蛋糕销售的地点有加利福尼亚州(CA)和华盛顿州(WA)
  • 文档6到8与文档5的quantitystate相同
  • 文档9与文档4的quantitystate相同
  • 文档10的quantitynull
  • 文档11的quantity字段缺失

下面的例子在$setWindowFields阶段使用$documentNumber输出文档在每个州的编号:

db.cakeSalesWithDuplicates.aggregate( [
   {
      $setWindowFields: {
         partitionBy: "$state",
         sortBy: { quantity: -1 },
         output: {
            documentNumberForState: {
               $documentNumber: {}
            }
         }
      }
   }
] )

在本例中:

  • partitionBy: "$state"对集合文档按照state字段进行分区,共有CAWA两个州。
  • sortBy: { quantity: -1 }根据quantity对文档进行逆序排序,quantity最大的在最前面
  • output将文档编号的值赋予字段documentNumberForState,并且在所在州中唯一,无论文档的quantity字段的值为null还是缺失。

结果如下:

{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
  "state" : "CA", "price" : 41, "quantity" : 162, "documentNumberForState" : 1 }
{ "_id" : 9, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"),
  "state" : "CA", "price" : 39, "quantity" : 162, "documentNumberForState" : 2 }
{ "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
  "state" : "CA", "price" : 12, "quantity" : 145, "documentNumberForState" : 3 }
{ "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
  "state" : "CA", "price" : 13, "quantity" : 120, "documentNumberForState" : 4 }
{ "_id" : 10, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"),
  "state" : "CA", "price" : 39, "quantity" : null, "documentNumberForState" : 5 }
{ "_id" : 11, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"),
  "state" : "CA", "price" : 39, "documentNumberForState" : 6 }
{ "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
  "state" : "WA", "price" : 14, "quantity" : 140, "documentNumberForState" : 1 }
{ "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
  "state" : "WA", "price" : 43, "quantity" : 134, "documentNumberForState" : 2 }
{ "_id" : 6, "type" : "strawberry", "orderDate" : ISODate("2020-01-08T06:12:03Z"),
  "state" : "WA", "price" : 41, "quantity" : 134, "documentNumberForState" : 3 }
{ "_id" : 7, "type" : "strawberry", "orderDate" : ISODate("2020-01-01T06:12:03Z"),
  "state" : "WA", "price" : 34, "quantity" : 134, "documentNumberForState" : 4 }
{ "_id" : 8, "type" : "strawberry", "orderDate" : ISODate("2020-01-02T06:12:03Z"),
  "state" : "WA", "price" : 40, "quantity" : 134, "documentNumberForState" : 5 }
{ "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
  "state" : "WA", "price" : 13, "quantity" : 104, "documentNumberForState" : 6 }

你可能感兴趣的:(mongodb,mongodb,数据库)