POJ 3101 Astronomy (挖坑待学Java……最小公倍数---大数表示)

题目大意:一个恒星系统中有n(2 ≤  n ≤ 1 000)颗行星,告诉你它们的运转周期Ti(1 ≤  ti ≤ 10 000),求他们能够同线的最小周期,表示形式是:分子 分母   类似物理上的追及问题(一个周期),而这里是半个周期。 仔细看图就知道任意两颗行星共线,则 x/t1 - x/t2 = 0 mod (1/2),运行距离差为半个周长的整数倍即可,整理得到(t2-t1)*x/(t1*t2) = 0 mod (1/2)。 我们可以第一颗行星作为标尺列n-1个方程: x/t1 - x/ti = 0 mod(1/2)。再将上述式子变形:x*(2/t1-2/ti)=0 mod 1,那么问题就转化为求(2/t1-2/ti) (2 ≤ i ≤ n)中分母的最小公倍数和分子的最大公约数,最小公倍数的答案的分子,最大公约数是答案的分母。   PS:这题在求最小公倍数时答案可能超过64位整数,用C++做会稍微麻烦 但也不是很麻烦……① 可以通过分解素因子的方式求最小公倍数,只需最后乘起来时用高精度即可。 而② 用Java的BigInteger则要简单很多~

你可能感兴趣的:(java)