ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

Description

Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的。现在他们开始在其他城市陆 续建立了新的基站,命令“C x“代表在城市x建立了一个新的基站,不会在同一个城市建立多个基站;城市编号为1到n,其中城市1就是首都Bytetown。在建立基站的过程中他们还 会询问某个城市的网络信号是从哪个城市传输过来的,命令”Q x“代表查询城市x的来源城市。

Input

输 入有多组测试数据。每组数据的第一行包含两个正整数n和m(1 <= n,m <= 100,000),分别代表城市数和命令数。接下来n-1行,每行两个正整数u和v,代表一条从城市u到城市v的网络传输通道。之后的m行,每行一个命 令”C x“或”Q x”。
所有输入的n和m的总和分别都不超过500,000,两组输入数据之间用一个空行隔开。

Output

对于每个查询命令,输出一个整数y,表示来源城市。每两组数据之间用一个空格隔开。

Sample Input

3 4
1 2
2 3
Q 3
C 2
Q 2
Q 3

Sample Output

1
2
2

 

题目大意是给了一个树,一开始所有结点的来源都是编号为1的那个结点。然后可以通过C操作来将某个城市设为来源城市,通过Q操作来查询最近的祖先来源城市。
当时省赛时的第一反应是用带时间戳的线段树去解决,但是没有看清查询的是最近的祖先来源城市,当成了纯粹的染色,果断写跪了。
于是这道题理论上可以有两种解法。不过本地测时,用递归去得到时间戳,深度很深会爆。

解法一:(带时间戳的线段树)
这个和线段树的苹果那题很像,首先通过dfs(当然理论上可以不通过递归实现),得到每个结点的左值和右值;
其中右值代表新编号,即是在dfs中后序遍历的标号。
左值代表子树中右值的最小值,即子树中的最小编号。
通过手画一张图基本上可以知道递归时的操作。

然后就是如何诠释C和Q操作了。
C操作原本是将原编号设为来源城市,即将子树中左值到右值区间内的所有结点染为当前城市编号,由于是染最近祖先来源城市,而且在树中时间戳从上往下是变小的。所以这一步应该是染结点的右值,而且进行懒人操作的pushDown时应该更新右值小的那一个。
Q操作是查询某个点,自然是查询这个点的右值到这个点的右值这个单点区间。得到的是时间戳的右值,再通过Hash回去,得到原编号即可。

解法二:(并查集离线查询)
由于查询操作和点修改操作是混合的,所以查询的时候不能带路径压缩,否则树的结构会被破坏。
但是如果所有的C操作都完成后,对剩余的Q操作便可以进行路径压缩。
于是考虑能不能从最后一个C操作还原到倒数第二个C操作,这样的话,就可以对这两个C直接的Q进行路径压缩。
由于C操作仅是将结点指向自己,所以还原C操作就是将结点指向原来的父节点。这样就只需要记录每个点的父节点。
综上可以对查询进行离线:先正着来一遍,只执行C操作,然后倒着查询,遇到C操作还原,遇到Q操作进行路径压缩,并将查询结果存入数组。

 

代码:(带时间戳的线段树)

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cstring>

#include <cmath>

#include <set>

#include <map>

#include <queue>

#include <string>

#include <algorithm>

#define LL long long



using namespace std;



const int maxN = 100005;



//链式前向星

struct Edge

{

    int to, next;

}edge[maxN];



int head[maxN], cnt;



void addEdge(int u, int v)

{

    edge[cnt].to = v;

    edge[cnt].next = head[u];

    head[u] = cnt;

    cnt++;

}



void initEdge()

{

    memset(head, -1, sizeof(head));

    cnt = 0;

}



int n, m;

int idL[maxN], idR[maxN];

int Hash[maxN];



void dfs(int now, int &num)

{

    idL[now] = num;

    for (int i = head[now]; i != -1; i = edge[i].next)

        dfs(edge[i].to, num);

    idR[now] = num;

    Hash[num] = now;

    num++;

}



//线段树

//区间染色变形,染最值

struct node

{

    int lt, rt;

    int val;

    int turn;

}tree[4*maxN];



//向下更新

void pushDown(int id)

{

    if (tree[id].turn != 0)

    {

        tree[id<<1].turn = min(tree[id].turn, tree[id<<1].val);

        tree[id<<1].val = tree[id<<1].turn;

        tree[id<<1|1].turn = min(tree[id].turn, tree[id<<1|1].val);

        tree[id<<1|1].val = tree[id<<1|1].turn;

        tree[id].turn = 0;

    }

}



//建立线段树

void build(int lt, int rt, int id)

{

    tree[id].lt = lt;

    tree[id].rt = rt;

    tree[id].val = idR[1];//每段的初值,根据题目要求

    tree[id].turn = 0;

    if (lt == rt)

        return;

    int mid = (lt + rt) >> 1;

    build(lt, mid, id<<1);

    build(mid + 1, rt, id<<1|1);

    //pushUp(id);

}



//修改区间值

void change(int lt, int rt, int id, int v)

{

    if (lt <= tree[id].lt && rt >= tree[id].rt)

    {

        tree[id].val = tree[id].turn = min(tree[id].val, v);

        return;

    }

    pushDown(id);

    int mid = (tree[id].lt + tree[id].rt) >> 1;

    if (lt <= mid)

        change(lt, rt, id<<1, v);

    if (rt > mid)

        change(lt, rt, id<<1|1, v);

    //pushUp(id);

}



//查询单点的值

int query(int lt, int rt, int id)

{

    if (lt <= tree[id].lt && rt >= tree[id].rt)

        return tree[id].val;

    pushDown(id);

    int mid = (tree[id].lt + tree[id].rt) >> 1;

    if (rt <= mid)

        return query(lt, rt, id<<1);

    if (lt > mid)

        return query(lt, rt, id<<1|1);

}



void input()

{

    initEdge();

    int u, v;

    for (int i = 1; i < n; ++i)

    {

        scanf("%d%d", &u, &v);

        addEdge(u, v);

    }

    int num = 1;

    dfs(1, num);

    build(1, n, 1);

}



void work()

{

    char str[5];

    int v;

    for (int i = 0; i < m; ++i)

    {

        scanf("%s%d", str, &v);

        if (str[0] == 'C')

            change(idL[v], idR[v], 1, idR[v]);

        else

            printf("%d\n", Hash[query(idR[v], idR[v], 1)]);

    }

}



int main()

{

    //freopen("test.in", "r", stdin);

    //freopen("test.out", "w", stdout);

    while (scanf("%d%d", &n, &m) != EOF)

    {

        input();

        work();

    }

    return 0;

}
View Code

 

代码:(并查集离线查询)

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cstring>

#include <cmath>

#include <set>

#include <map>

#include <queue>

#include <string>

#include <algorithm>

#define LL long long



using namespace std;



const int maxN = 100005;



int n, m;

int ufs[maxN];

int fa[maxN];

char op[maxN][3];

int query[maxN];

int ans[maxN], top;



int findRoot(int x)

{

    int pre, now, rx;

    rx = x;

    while(ufs[rx] != 0)

        rx = ufs[rx];

    pre = x;

    while(pre != rx)

    {

        now = ufs[pre];

        ufs[pre] = rx;

        pre = now;

    }

    return rx;

}



void input()

{

    memset(ufs, 0, sizeof(ufs));

    top = 0;

    int u, v;

    for (int i = 1; i < n; ++i)

    {

        scanf("%d%d", &u, &v);

        ufs[v] = u;

        fa[v] = u;

    }

    for (int i = 0; i < m; ++i)

    {

        scanf("%s%d", op[i], &query[i]);

        if (op[i][0] == 'C')

        {

            ufs[query[i]] = 0;

        }

    }

}



void work()

{

    for (int i = m-1; i >= 0; --i)

    {

        if (op[i][0] == 'C')

        {

            ufs[query[i]] = fa[query[i]];

        }

        else

        {

            ans[top++] = findRoot(query[i]);

        }

    }

    while (top)

    {

        top--;

        printf("%d\n", ans[top]);

    }

}



int main()

{

    //freopen("test.in", "r", stdin);

    //freopen("test.out", "w", stdout);

    while (scanf("%d%d", &n, &m) != EOF)

    {

        input();

        work();

    }

    return 0;

}
View Code

 

你可能感兴趣的:(程序设计)