- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- QT与Python混合编程经验记录
weixin_30237281
python人工智能c/c++
1、如何embeddingpython,Python文档中有专门一章阐述https://docs.python.org/3.5/extending/embedding.htm;1、库文件:在vs--c/c++--附加包含文件中添加目;链接中也要添加,:将python中的include,libs二个目录添加进来2、对于Python,没有调试库,可直接将运行库复制一份,名称后面加上_d,就可用,可不能
- Linux 帧缓存 数据,嵌入式Linux通过帧缓存截图 – Framebuffer Screenshot in Embedded Linux...
weixin_39578674
Linux帧缓存数据
嵌入式Linux通过帧缓存截图–EmbeddedLinuxFramebufferScreenshot【目的】板子上已经可以运行Qtopia的demo和example了,想要将其qt的demo程序的画面截取下来,给其他人看。最原始的方法就是,找个相机,对着板子照几张即可。另外的办法,通过framebuffer去截图,截取运行中的qtdemo的画面,效果会更好,图片也更清晰。【解决过程】1.将fram
- 使用Fleet AI Context和LangChain构建高效的文档检索系统
afTFODguAKBF
人工智能langchainpython
使用FleetAIContext和LangChain构建高效的文档检索系统引言在当今的AI和机器学习领域,高质量的文档检索系统对于提高开发效率和用户体验至关重要。本文将介绍如何利用FleetAIContext提供的高质量embeddings和LangChain框架来构建一个强大的文档检索系统。我们将深入探讨如何处理嵌入向量、检索相关文档,以及如何将这些功能整合到一个简单但功能强大的代码生成链中。主
- Error: No STM32 target found! If your product embeds Debug Authentication, please perform a discover
BABA8891
stm32嵌入式硬件单片机
这个错误信息“Error:NoSTM32targetfound!IfyourproductembedsDebugAuthentication,pleaseperformadiscoveryusingDebugAuthentication”通常出现在使用STM32微控制器的开发过程中,尤其是在尝试通过调试接口(如SWD或JTAG)与设备通信时。这个错误表明调试器或开发工具无法识别或连接到STM32目
- ARM-Cortex-M架构:1、STM32函数参数传递
天城寺电子
嵌入式软件开发arm开发stm32汇编C语言
文章目录参数传递概览堆栈传递参数具体过程参数传递概览在调用子函数时,ARMCortex-M3处理器可以使用寄存器和堆栈来传递参数。具体使用哪种方式取决于传递的参数数量和调用约定(callingconvention)。参数传递方式ARMCortex-M3处理器使用ARMEABI(EmbeddedApplicationBinaryInterface)标准来定义参数传递的约定。根据这个约定:1、寄存器传
- Transformer模型:WordEmbedding实现
Galaxy.404
Transformertransformer深度学习人工智能embedding
前言最近在学Transformer,学了理论的部分之后就开始学代码的实现,这里是跟着b站的up主的视频记的笔记,视频链接:19、Transformer模型Encoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili正文首先导入所需要的包:importtorchimportnumpyasnpimporttorch.nnasnnimporttorch.nn.functionalasF关
- 如何将文本转换为向量?(方法二)
DashVector
python开发语言人工智能embedding数据挖掘
文本转换为向量有多种方式:方法一:通过模型服务灵积DashScope将文本转换为向量(推荐)方法二:通过ModelScope魔搭社区中的文本向量开源模型将文本转换为向量方法三:通过JinaEmbeddingsv2模型将文本转换为向量方法四:通过百川智能向量化模型将文本转换为向量本文介绍方法二:如何通过ModelScope魔搭社区中的文本向量开源模型将文本转换为向量,并入库至向量检索服务DashVe
- 探索任务的隐秘世界:推荐Task2Vec
邓越浪Henry
探索任务的隐秘世界:推荐Task2Vecaws-cv-task2vecOfficialcodeforthepaper"Task2Vec:TaskEmbeddingforMeta-Learning"(https://arxiv.org/abs/1902.03545,ICCV2019)项目地址:https://gitcode.com/gh_mirrors/aw/aws-cv-task2vec在机器学习
- OpenGL ES基本概念
Irino
OpenGLES的版本OpenGLES1.X:用于固定功能流水管线硬件OpenGLES2.X:用于可编程功能流水管线硬件OpenGLES3.X:OpenGLES2.0的拓展EGL(EmbeddedGraphicsLibrary)OpenGLES命令需要渲染上下文和绘制表面才能完成图形图像的绘制渲染上下文:存储相关OpenGLES状态绘制表面:是用于绘制图元的表面,它指定渲染所需要的缓存区类型,例如
- c语言中char16_t是什么类型,错误[Pe167]:类型为“uint16_t *”的参数与类型为“unsigned char *”的参数不兼容...
于西奥
我想通过usb建立tablet与stm32之间的通信,为此我在代码中添加了usb库。在代码中添加库我得到了这个错误。错误[Pe167]:类型为“uint16_t*”的参数与类型为“unsignedchar*”的参数不兼容错误[Pe167]:类型的参数“uint16_t*”是类型为“无符号字符*”我使用的参数不兼容的IAREmbeddedWorkbenchEWARM工具STM32coding.Err
- 掌握嵌入式Linux编程 - 第三版
秋玥多
掌握嵌入式Linux编程-第三版Mastering-Embedded-Linux-Programming-Third-EditionMasteringEmbeddedLinuxProgrammingThirdEdition,publishedbyPackt项目地址:https://gitcode.com/gh_mirrors/ma/Mastering-Embedded-Linux-Programm
- 常用torch.nn
mm_exploration
MyDiffusionpythonpytorch人工智能
目录一、torch.nn和torch.nn.functional二、nn.Linear三、nn.Embedding四、nn.Identity五、Pytorch非线性激活函数六、nn.Conv2d七、nn.Sequential八、nn.ModuleList九、torch.outertorch.cat一、torch.nn和torch.nn.functionalPytorch中torch.nn和torc
- DEFT 开源项目教程
马安柯Lorelei
DEFT开源项目教程DEFTJointdetectionandtrackingmodelnamedDEFT,or``DetectionEmbeddingsforTracking."Ourapproachreliesonanappearance-basedobjectmatchingnetworkjointly-learnedwithanunderlyingobjectdetectionnetwor
- 【LangChain-Chatchat】本地部署模型及搭建个人/企业内部知识库
AI_小站
langchain人工智能ai大模型语言模型自然语言处理
此学习教程结合本人安装经验主要提供给想学习和本地安装使用LangChain-Chatchat的同学们,该教程如有描述不当或者引用不正确的地方,欢迎指出!后续也会更新如何结合自己系统使用。介绍基于ChatGLM等大语言模型与Langchain等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。该项目支持开源LLM与Embedding模型,亦可实现全部使用开源模型离线私有部署。与
- Milvus 核心设计 (4) ---- metric及index原理详解与示例(2)
PhoenixAI8
RAGMilvusChroma源码及实践milvuspython机器学习vectordb人工智能
目录背景BinaryEmbedding定义与特点常见算法应用场景距离丈量的方式JaccardHamming代码实现IndexBIN_FLATBIN_IVF_FLATSparseembeddings定义应用场景优点实现方式距离丈量方式IPIndexSPARSE_INVERTED_INDEX应用场景优势SPARSE_WAND工作原理性能特点应用场景小结背景接着上面的Milvusmetric及index
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- Integrating Mamba and Transformer for Long-Short Range Time Series Forecasting————4 METHODOLOG
six.学长
Mambaformertransformer深度学习人工智能
4METHODOLOGY图解Mambaformer模型结合了Mamba和Transformer的元素,旨在进行时间序列预测。以下是Mambaformer模型的各个组成部分和流程的详细说明:嵌入层(EmbeddingLayer)TokenEncoding(令牌编码):这个部分将输入数据编码成向量表示,以捕捉输入特征的语义含义或特征。TemporalEncoding(时间编码):这部分加入时间信息,例
- SpringBoot3配置dynamic多数据源,url找不到。Failed to configure a DataSource: ‘url‘ attribute is not specified a
Java小白笔记
SpringBootjavamavenintellij-ideaspringboot
SpringBoot3配置dynamic多数据源,url找不到。FailedtoconfigureaDataSource:‘url’attributeisnotspecifiedandnoembeddeddatasourcecouldbeconfigured.我在编写springboot项目时尝试使用dynamic-datasource实现多数据库连接运行项目时报错退出Failedtoconfig
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- 英伟达发布最新屠榜 Embedding 模型——NV-Embed-v2
吴脑的键客
人工智能embedding数据库
介绍我们介绍的NV-Embed-v2是一种通用嵌入模型,它在大规模文本嵌入基准(MTEBbenchmark)(截至2024年8月30日)的56项文本嵌入任务中以72.31的高分排名第一。NV-Embed-v2提出了几项新设计,包括让LLM关注潜在向量以获得更好的池化嵌入输出,并展示了一种两阶段指令调整方法,以提高检索和非检索任务的准确性。此外,NV-Embed-v2还采用了一种新颖的硬阴性挖掘方法
- java正则表达式提取字符串中的序号,BAT大厂面试总结
qq_38514574
程序员java经验分享面试
第一个:Alibaba[搜索推荐]一面:算法题:长度为n的数组里放了n+1个大小在[1,n]的数,必然至少有一个重复的数,找出来二面:概率题:求一根绳子被切两刀能组成一个三角形的概率。三面主管面:FM推导,deepfm原理,graphembedding,问了之前的一些项目。四面交叉面:模型上线时应该注意的事,如果请求过高模型服务挂了怎么办,tensorflow和torch的区别,如何降低模型复杂度
- SpringBoot 依赖之Spring Web
ahauedu
微服务架构设计springspringbootmavenintellij-idea
SpringBoot依赖之SpringWeb详细介绍SpringWeb依赖的内容:第1章:SpringWeb1.简介功能描述英文:Buildweb,includingRESTful,applicationsusingSpringMVC.UsesApacheTomcatasthedefaultembeddedcontainer.中文译文:使用SpringMVC构建Web应用程序,包括RESTful应
- 2.关于Transformer
安逸sgr
Transformertransformer深度学习人工智能
关于Transformer模型架构举例输入图像为3x224x224EmbeddedPatches将一张图的多个区域进行卷积,将每个区域转换成多维度向量(多少卷积核就有多少维向量)self.patch_embeddings=Conv2d(in_channels=in_channels,#颜色通道3out_channels=config.hidden_size,#卷积核个数,也就是输出通道数768ke
- SpringBoot报错:Failed to configure a DataSource: 'url' attribute is not specified and no embedded d...
木塞
SpringBoot集成MyBatis时报了如下错误:APPLICATIONFAILEDTOSTARTDescription:FailedtoconfigureaDataSource:'url'attributeisnotspecifiedandno>embeddeddatasourcecouldbeconfigured.Reason:Failedtodetermineasuitabledrive
- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- python-termcolor-1.1.0无法正常安装
jayli517
异常错误处理
pipinstalltermcolor报错,版本大幅度降低尝试下载1.1安装包直接安装仍然报错解压缩后将py文件直接拷贝至D:\python-3.7.9-embed-amd64\Lib\site-packages下,然后pip安装成功
- Linux 网络适配,ping命令,更改自己的IP地址
hardStudy_h
LINUX笔记
Linux系统下不同于Windows系统。Windoes系统下ping命令默认只发送接受四次数据,而Linux默认不会终止,可以通过Ctrl+C进行强制终止。第一步:确认自己的IP地址,只能更改最后一位,如图可以更改为198.168.1.xx且我的网卡名为:eth0CLC@Embed_Learn:~$ping192.168.1.88PING192.168.1.88(192.168.1.88)56(
- go:embed 使用注意事项
Saltwater_leo
golang开发语言后端
1、go:embed配置的路径:该路径是相对于go:embed声明所属的文件进行寻址,不是根据gomod,也不是main.go
- Transformer模型整体构建的实现
好好学习Py
自然语言处理transformerpython人工智能深度学习pytorchnlp
编码器-解码器结构classEncoderDecoder(nn.Module):def__init__(self,encoder,decoder,source_embedding,target_embedding,generator):"""初始化函数中有5个参数,分别是编码器对象,解码器对象,源数据嵌入函数,目标数据嵌入函数,以及输出部分的类别生成器对象"""super(EncoderDecod
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置