- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 从0开始,手搓一个ViT
星光银河
学习python深度学习机器学习学习神经网络人工智能transformer
importtorchimporttorch.nnasnnimporttorch.nn.functionalasFclassPatchEmbedding(nn.Module):def__init__(self,img_size,patch_size,in_chans,embed_dim):super().__init__()assertimg_size%patch_size==0,"Imagedi
- 【保姆级教程】Cpolar+EasyImage搭建私人图床,看完就会!
文章目录1.前言2.EasyImage网站搭建2.1.EasyImage下载和安装2.2.EasyImage网页测试2.3.cpolar的安装和注册3.本地网页发布3.1.Cpolar云端设置3.2Cpolar内网穿透本地设置4.公网访问测试5.结语1.前言在数字内容创作领域,高效的视觉素材管理系统已成为提升生产效能的核心要素。当前创作者面临的关键困境在于:如何建立可自主掌控的图像存储架构?虽然云
- PYTHON表情识别常用函数
python表情识别常用函数函数read_image(image:Union[str,Path]):用于实现指定目录下的文件读取参数类型:表征图片文件路径的字符串函数draw_bounding_box(face_coordinates,image_array,color):用于绘制识别框参数类型:face_coordinates包含人脸左边坐标、顶端坐标、宽度、高度的list;图片数组image_
- 【ubuntu】如何构建自己的ubuntu内核
1.准备环境sudoaptupdatesudoaptinstallbuild-essentialfakerootdpkg-devkernel-packagelibncurses-devbisonflexlibssl-devlibelf-dev2.下载内核源码确认源码包,下载源码包。dpkg-S/boot/vmlinuz-$(uname-r)linux-image-5.15.0-46-generic
- docker windows 安装mysql:8.0.23
kobe_OKOK_
dockerwindowsmysql
dockerwindows安装mysql拉取镜像dockerpullmysql:8.0.23检查dockerimages创建容器dockerrun-p3306:3306--namemysql-vE:/docker_data_map/mysql/mysql-files:/var/lib/mysql-files-vE:/docker_data_map/mysql/conf:/etc/mysql-vE:
- Compose 高级用法详解——AI教你学Docker
LuckyLay
AI教你学Dockerdocker容器运维
3.6Compose高级用法详解DockerCompose除了常规的多服务编排,还支持一系列高级功能,如服务健康依赖、环境切换、配置模板化等。掌握这些技巧,能让你的多容器项目更健壮、更自动化、更易维护。一、depends_on的高级用法与启动顺序1.基本用法depends_on指定服务间的启动顺序,确保依赖的服务优先启动。services:web:depends_on:-dbdb:image:po
- 前端渲染大量图片的首屏加载优化方案
啃火龙果的兔子
开发DEMO前端
渲染大量图片时,首屏加载性能至关重要。以下是全面的优化方案:一、图片资源优化1.图片格式选择WebP格式:比JPEG小25-35%,支持透明AVIF格式:新一代格式,压缩率更高(Chrome/Firefox支持)渐进式JPEG:逐步加载显示SVG:适合图标/简单图形2.图片压缩使用工具压缩:TinyPNG、Squoosh、ImageOptim服务端自动压缩:Sharp(Node.js)、Pillo
- python图像识别哪些库_利用ImageAI库只需几行python代码实现目标检测
weixin_39667398
python图像识别哪些库
什么是目标检测目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization)+识别(Recognition)。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。通俗的说,ObjectDetection的目
- 小学期前端三件套学习(更新中)
第一阶段HTML基础结构页面标题页面内容常用内容标签文本类标签•~:标题(h1每个页面建议只用一次)•:段落•:行内文本容器•:加粗强调•:斜体强调媒体类标签•:图片(alt属性必须写)•:音频•:视频下拉框请选择选项1选项2选项3国家:--请选择--中国美国列表标签项目第一项超链接与锚点外部链接跳转到章节邮件链接表格![[Pastedimage20250628100803.png]]源码.tab
- 使用 Dockerfile 构建基于 .NET9 的跨平台基础镜像
官方基础镜像准备微软官方dotnetsdk基础镜像:dockerpullmcr.microsoft.com/dotnet/sdk:9.0拉取ubuntu镜像:dockerpullubuntu:24.04更多资源请参考:dotnetsdkimages,https://mcr.microsoft.com/en-us/artifact/mar/dotnet/sdk/tagsgithubdockerbui
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 在开发板I.MX6U上进行QT开发
路溪非溪
qt数据库系统架构
本文主要参考正点原子的QT开发手册,仅作为个人学习笔记使用。请用正点原子I.MX6U开发板进行实验,注意是用出厂系统,包括出厂内核(zImagemodules)、设备树(dtb)出厂文件系统!重要的事情得说三遍!本篇使用的是正点原子I.MX6U出厂系统进行实验!本篇使用的是正点原子I.MX6U出厂系统进行实验!本篇使用的是正点原子I.MX6U出厂系统进行实验!为什么强调是要使用默认的出厂系统?因为
- Skia图形库:绘制2D世界的核心组件
文章摘要Skia是Google开发的跨平台2D图形库,核心组件包括:SkCanvas(绘图入口)、SkPaint(画笔样式)、SkPath(几何形状)、SkImage/SkBitmap(图片处理)、SkFont/SkTypeface(文本渲染)以及SkSurface(画布载体)。支持CPU/GPU/PDF/SVG多种渲染后端,广泛应用于Chrome、Flutter等项目中,提供从基础绘图到高级特效
- python3多个图片合成一个pdf文件,生产使用验证过
少陽君
python3付费教程pdfpythonlinux
简单的示例代码,展示如何将多个图片合成为一个PDF文件。步骤1:安装依赖库首先,确保你已经安装了Pillow和reportlab库:pipinstallPillowreportlab步骤2:编写代码下面是一个Python脚本,它将指定目录中的所有图片文件合成一个PDF文件:fromPILimportImageimportosfromreportlab.pdfgenimportcanvasfromr
- Vue 图片加载失败显示默认图片
数字浪儿
vuevue.js前端javascript
方法一:通过onerror属性加载默认图片exportdefault{data(){return{img:'',//访问图片的ip地址defaultImg:`this.src='${require('@/assets/images/right/default-person.png')}'`,};},}方法二:通过@error方法加载默认图片exportdefault{data(){return{i
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 跟着AI学习C#之项目实战-电商平台 Day7
蓝胖子不会敲代码
C#学习c#开发语言
Day7:部署准备与优化✅今日目标:添加静态资源(CSS、JS、图片)优化页面样式与交互体验添加分页功能(商品、订单列表)配置生产环境设置(appsettings.Production.json)准备发布部署(dotnetpublish)功能概览类型内容静态资源wwwroot/css,wwwroot/js,wwwroot/images页面样式优化使用Bootstrap+自定义CSS增强用户体验分页
- uniapp image引用本地图片不显示问题
雪芽蓝域zzs
uniappuni-app
1.uniappimage引用本地图片不显示问题 在uniapp开发过程中采用image引入本地资源图片。1.1.相对路径和绝对路径问题 在UniApp中开发微信小程序时,引入图片时,相对路径和绝对路径可能会有一些差异。这差异主要涉及到小程序和UniApp框架的文件结构、路径解析规则以及开发环境的不同。1.1.1.相对路径: 相对路径是相对于当前文件的路径来引用资源的。例如,如果你的页面文件
- RabbitMQ实战:docker compose 搭建RabbitMQ
道法自然 实事求是
#MQrabbitmqdockerruby
目录一、yml文件准备二、启动RabbitMQ三、开启图形化管理界面四、验证参考资料一、yml文件准备docker-compose-rabbitmq.yml文件如下所示version:"3.8"services:rabbitmq:image:rabbitmq:3.11-alpinecontainer_name:rabbitmqrestart:alwaysvolumes:-/home/docker/
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- uniapp+vue写小程序页面,实现一张图片默认放大后,可以在容器内上下左右拖动查看
1.组件chargingimageViewerimport{ref,onMounted,computed}from'vue';constprops=defineProps({imageUrl:{type:String,required:true,},});//视图容器尺寸constVIEW_WIDTH=750;//微信小程序设计稿宽度constVIEW_HEIGHT=1800;//缩放限制cons
- 关于java通过背景图生成图片
a未来永远是个未知数
#java的图片处理javajavaintellij-ideamavenspringboot图像处理
目录对接部分(碎碎念,可跳过)引入本地jar包文件路径错误尝试解决方案开发部分获取字体的方法关于二维码的生成关于在背景图上添加内容关于在背景图上写字关于在背景图上叠加图片关于保存图片第一次尝试第二次尝试第三次尝试最终方案关于文件读取为MultipartFile类型关于BufferedImage转MultipartFile最近用到了需要生成图片的开发,作为一个没有接触过这个的后端,实在头秃,记录一下
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- CVPR2024 分割Segmentation相关论文37篇速览
木木阳
CVPR2024Segmentation分割论文
Paper1MFP:MakingFullUseofProbabilityMapsforInteractiveImageSegmentation摘要小结:最近的交互式分割算法中,将先前的概率图作为网络输入,以帮助当前分割轮次的预测。然而,尽管使用了先前的掩膜,概率图中包含的有用信息并没有很好地传播到当前预测中。在本文中,为了克服这一局限性,我们提出了一种新颖有效的基于点击的交互式图像分割算法MFP,
- 【图像去噪】论文精读:Linear Combinations of Patches Are Unreasonably Effective for Single-Image Denoising
十小大
深度学习图像处理计算机视觉图像去噪人工智能
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractI.INTRODUCTIONII.APARAMETRICVIEWOFTWO-STEPNON-LOCALMETHODSFORSINGLE-IMAGEDE
- image-webpack-loader 使用教程
毛炎宝Gardener
image-webpack-loader使用教程image-webpack-loaderImageloadermoduleforwebpack项目地址:https://gitcode.com/gh_mirrors/im/image-webpack-loader1.项目目录结构及介绍image-webpack-loader是一个用于Webpack的图片压缩加载器。由于该仓库主要是npm包而非独立的应
- flutter滑块验证
zqwily
flutterandroid
import'dart:convert';import'dart:math';import'package:flutter/cupertino.dart';import'package:flutter/material.dart';import'package:toptongpin/app/common/widgets/image/local_image.dart';import'package:
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round