[LeetCode]LRU Cache有个问题,求大神解答【已解决】

题目:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

这是我的代码:

 1 class LRUCache{
 2 public:
 3     int num;
 4     int max;
 5     list<int> latest_key;         //用于保存使用情况,队头是最久未使用的,队尾是最近使用的
 6     unordered_map<int, int> cache;   //用于保存key,value
 7 
 8     LRUCache(int capacity) {
 9         num = 0;
10         max = capacity;
11     }
12 
13     int get(int key) {
14         unordered_map<int, int>::iterator it = cache.find(key);
15         list<int>::iterator iter;
16         if (it == cache.end())  //如果没有找到key
17             return -1;
18         else            //如果找到了key,就在对应的最近latest队列里面修改key的位置,先把key所在的位置删除,再把key放到队尾
19         {
20             iter = latest_key.begin();
21             while (*iter != key)
22                 iter++;
23             latest_key.erase(iter);
24             latest_key.push_back(key);
25             return it->second;
26         }
27     }
28 
29     void set(int key, int value) {
30         unordered_map<int, int>::iterator it = cache.find(key);
31         list<int>::iterator iter;
32         if (it != cache.end())  //如果要插入的已经有key存在,就先在优先队列里面找到key出现的位置,删除,再把key插入队尾
33         {
34             it->second = value;
35             iter = latest_key.begin();
36             while (*iter != key)
37                 iter++;
38             latest_key.erase(iter);
39             latest_key.push_back(key);
40         }
41         else            //如果要插入的不存在
42         {
43             if (num<max)  //如果不超过cache容量,则直接在cahe中插入,再在队尾添加该key
44             {
45                 num++;
46                 cache.insert(std::pair< int, int >(key, value));
47                 latest_key.push_back(key);
48             }
49             else      //如果cache已经满了,则根据队头元素,在cache删除对应键值,再在队列中删除这个队头,之后,把新要插入的键值插入cache中,把新key插入队尾
50             {
51                 int latest = latest_key.front();
52                 cache.erase(latest);
53                 latest_key.pop_front();
54                 cache.insert(std::pair< int, int >(key, value));
55                 latest_key.push_back(key);
56             }
57         }
58     }
59 };

  当我把代码中出现:

1  iter = latest_key.begin();
2  while (*iter != key)
3     iter++; 

  部分替换为:

1 iter=find(latest_key.begin(),latest_key.end(),key);

  就会报错:

Time Limit Exceeded

Last executed input: 2048,[set(1178,3401),set(903,6060).....

  我大致查了一下find的实现机制,也是遍历啊,按理说这两者效率差不多,为什么替换之后就不能通过?而替换之前能通过,求大神解答!!

  万分感谢!!!

  在Leetcode上问,已经得到答案:

[LeetCode]LRU Cache有个问题,求大神解答【已解决】_第1张图片

 

  之前的那个算法效率确实不高,压线过的,修改了原有代码,增加了一个unordered_map<int, list<int>iterator>用来索引list,可以使时间复杂度降到O(1):

 1 class LRUCache{
 2 private:
 3     unordered_map<int, int> cache;
 4     unordered_map<int, list<int>::iterator> find_key;
 5     list<int> latest_key;
 6     int max;
 7 public:
 8     LRUCache(int capacity) : max(capacity){
 9 
10     }
11 
12     int get(int key) {
13         if (cache.find(key) == cache.end()){
14             return -1;
15         }
16         latest_key.erase(find_key[key]);
17         latest_key.push_front(key);
18         find_key[key] = latest_key.begin();
19         return cache[key];
20     }
21 
22     void set(int key, int value) {
23         if (cache.find(key) == cache.end()) {
24             if (cache.size() >= max) {
25                 cache.erase(latest_key.back());
26                 latest_key.pop_back();
27                 cache[key] = value;
28                 latest_key.push_front(key);
29                 find_key[key] = latest_key.begin();
30             }
31             else {
32                 cache[key] = value;
33                 latest_key.push_front(key);
34                 find_key[key] = latest_key.begin();
35             }
36         }
37         else {
38             cache[key] = value;
39             latest_key.erase(find_key[key]);
40             latest_key.push_front(key);
41             find_key[key] = latest_key.begin();
42         }
43     }
44 };

 

你可能感兴趣的:(LeetCode)