A: 相邻三个和最大,及对应中间位置. 暴力即可.
#include <iostream> #include <cmath> #include <cstring> #include <cstdio> #include <string> #include <stdlib.h> #include <algorithm> using namespace std; typedef long long LL; const LL Mod= 1e9+7; const int N = 1010; int a[N], n; int main( ) { while( scanf("%d",&n)!=EOF ){ for(int i = 0; i < n; i++ ) scanf("%d",a+i); int res = -1, idx; for(int i = 0; i < n-2; i++ ){ int t = 0; for(int j = i; j <= i+2; j++ ) t += a[j]; if( t > res ) res = t, idx = i+1; } printf("%d %d\n", res , idx+1 ); } return 0; }
B: 题意不明.
C: 题意不明.
D: 题意不明.
E: 同上
F: 主要是复制操作,注意观察, 操作数只有 10^6, 意味着栈中元素超过2n后,复制操作没有效果了.这里就可以忽视复制了.否则用memcpy即可.
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> using namespace std; const int N = (int)1e6+100; int a[N<<2], n; int main(){ while( scanf("%d",&n) != EOF){ int l = 0, r = -1; for(int i = 0; i < n; i++){ int x; scanf("%d", &x); if( x > 0 ) a[++r] = x; else if( x == -1 ) printf("%d\n", a[r--] ); else{ if( (r+l-1) >= n ) continue; memcpy( a+r+1, a+l, (r-l+1)*sizeof(int)); r = r+(r-l+1); } } } return 0; }
G: 题意不明
H: 好神奇的题意... 给定生命上限P, 用威力为K的技能打掉 所有小于K的棋子,反弹伤害为 num*K, 明白了这个贪心即可.
#include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<map> using namespace std; const int N = 1010; int a[N], n, p; map<int,int> mp; int main(){ while( scanf("%d%d", &n,&p) != EOF){ mp.clear(); for(int i = 0; i < n; i++){ scanf("%d",&a[i]); if( mp.count(a[i]) == 0 ) mp[a[i]] = 1; else mp[a[i]]++; } sort( a, a+n ); n = unique(a,a+n)-a; int n1 = 0, n2 = 0; int i = 0; while( i < n ){ if( p >= mp[a[i]]*a[i] ){ int j = i, t = 0; while( (j<n) && (p>=a[j]*(t+mp[a[j]])) ) t += mp[a[j]], j++; for(int k = i; k < j; k++) n1 += mp[ a[k] ]; n2++; i = j; } else break; } printf("%d %d\n", n1, n2 ); } return 0; }
I: 题意不明
J: 同上
K: 题目可转换成从一个点出发走M步回来, 输出路径. 当M为奇数或者M大于格子总数量不可行,其他情况都有解.
接下来就是构造一个符合条件的解了.我们设定起点为(1,1) ,这里要分两总情况:
当 N是偶数,则N*N也是偶数,可以通过 保留第一列,然后 [2,N] 走Z字形,总是能得出解.因为是成对的.
当 N是奇数,则N*N也是奇数, 则 保留一列,走Z字,是不行的,因为Z字不成对, 不过我们可以保留 2列,以及最后两行,
来走Z字, 然后四个相邻绕圈即可..
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> using namespace std; const int N = 110; bool vis[N][N]; int n, m; int cnt[N*N]; int dir[4][2]={{0,-1},{0,1},{1,0},{-1,0}}; bool flag; bool legal(int x,int y){ if(x>=0&&x<n&&y>=0&&y<n) return true; return false; } void dfs(int x,int y,int f,int L){ if( flag ) return; if( L == m ){ if( (x==0) && (y==0) ) flag = true; return ; } else{ for(int i = 0; i < 4 && !flag; i++){ int xx = dir[i][0]+x, yy = dir[i][1]+y; if( legal(xx,yy) && (!vis[xx][yy]) && (xx*n+yy != f) ){ if( (((xx+yy)&1) != ((m-L-1)&1)) || ((xx+yy)>(m-L-1)) ) continue; vis[xx][yy] = true; cnt[L] = xx*n+yy; dfs( xx,yy,x*n+y,L+1); vis[xx][yy] = false; } } } } void solve(){ int L = m-1, k; int x = 2, y = 1; while( 1 ){ k = 2*n+y-2; if( L > k ){ for(int i = x; i <= n; i++) printf("%d %d\n", i, y ); for(int i = n; i >= x; i--) printf("%d %d\n", i, y+1); L -= (2*n-2); y += 2; } else{ //printf("x = %d, y = %d\n", x, y ); //printf("k = %d, L = %d\n", k , L ); int a = (k-L)/2; if( L == y ){ printf("%d %d\n", x, y ); for(int i = y; i > 1; i-- ) printf("1 %d\n", i); } else{ for(int i = x; i <= n-a; i++) printf("%d %d\n", i, y); for(int i = n-a; i >= x; i--) printf("%d %d\n", i, y+1); for(int i = y+1; i > 1; i--) printf("1 %d\n", i ); } break; } } } void gao(){ for(int i = 2; i <= n; i++) printf("1 %d\n", i ); int x = 2, y = n, L = n*n-m; for(int k = 1; k <= (n-2)/2; k++){ for(int i = y; i >= 3; i--) printf("%d %d\n", x, i ); for(int i = 3; i <= y; i++) printf("%d %d\n", x+1, i ); x += 2; } int yy = y; while( yy > L ){ printf("%d %d\n", x, yy); printf("%d %d\n", x+1, yy); printf("%d %d\n", x+1, yy-1); printf("%d %d\n", x, yy-1); yy -= 2; } for(int i = yy; i >= 1; i-- ) printf("%d %d\n", x, i ); x = n-2, y = 1; for(int k = 1; k <= (n-3)/2; k++){ printf("%d %d\n", x, y ); printf("%d %d\n", x, y+1); printf("%d %d\n", x-1, y+1); printf("%d %d\n", x-1, y); x -= 2; } } int main(){ while( scanf("%d%d", &n,&m) != EOF){ if( (m>n*n)||((m&1)) ) puts("Unsuitable device"); else{ puts("Overwhelming power of magic"); puts("1 1"); if( !(n&1) || (n<3) || (m<=n*(n-1)+2) ) solve(); else gao(); } } return 0; }