这篇博文主要记录caffe开发环境的种种。
在直接使用caffe的时候,需要对数据做格式转换。然后配置一个网络格式的描述文件即可进行训练。但是在做预测和格式转化的时候,我们需要将Caffe当作一个sdk那样来使用。
这里我主要解决配置IDE。这里我选用的是nsight,因为装好cuda之后,这个编辑器就自带了。
代码我选用caffe/examples/mnist/convert_mnist_data.cpp/
// This script converts the MNIST dataset to a lmdb (default) or // leveldb (--backend=leveldb) format used by caffe to load data. // Usage: // convert_mnist_data [FLAGS] input_image_file input_label_file // output_db_file // The MNIST dataset could be downloaded at // http://yann.lecun.com/exdb/mnist/ #include <gflags/gflags.h> #include <glog/logging.h> #include <google/protobuf/text_format.h> #include <leveldb/db.h> #include <leveldb/write_batch.h> #include <lmdb.h> #include <stdint.h> #include <sys/stat.h> #include <fstream> // NOLINT(readability/streams) #include <string> #include <caffe/proto/caffe.pb.h> using namespace caffe; // NOLINT(build/namespaces) using std::string; DEFINE_string(backend, "lmdb", "The backend for storing the result"); uint32_t swap_endian(uint32_t val) { val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF); return (val << 16) | (val >> 16); } void convert_dataset(const char* image_filename, const char* label_filename, const char* db_path, const string& db_backend) { // Open files std::ifstream image_file(image_filename, std::ios::in | std::ios::binary); std::ifstream label_file(label_filename, std::ios::in | std::ios::binary); CHECK(image_file) << "Unable to open file " << image_filename; CHECK(label_file) << "Unable to open file " << label_filename; // Read the magic and the meta data uint32_t magic; uint32_t num_items; uint32_t num_labels; uint32_t rows; uint32_t cols; image_file.read(reinterpret_cast<char*>(&magic), 4); magic = swap_endian(magic); CHECK_EQ(magic, 2051) << "Incorrect image file magic."; label_file.read(reinterpret_cast<char*>(&magic), 4); magic = swap_endian(magic); CHECK_EQ(magic, 2049) << "Incorrect label file magic."; image_file.read(reinterpret_cast<char*>(&num_items), 4); num_items = swap_endian(num_items); label_file.read(reinterpret_cast<char*>(&num_labels), 4); num_labels = swap_endian(num_labels); CHECK_EQ(num_items, num_labels); image_file.read(reinterpret_cast<char*>(&rows), 4); rows = swap_endian(rows); image_file.read(reinterpret_cast<char*>(&cols), 4); cols = swap_endian(cols); // lmdb MDB_env *mdb_env; MDB_dbi mdb_dbi; MDB_val mdb_key, mdb_data; MDB_txn *mdb_txn; // leveldb leveldb::DB* db; leveldb::Options options; options.error_if_exists = true; options.create_if_missing = true; options.write_buffer_size = 268435456; leveldb::WriteBatch* batch = NULL; // Open db if (db_backend == "leveldb") { // leveldb LOG(INFO) << "Opening leveldb " << db_path; leveldb::Status status = leveldb::DB::Open( options, db_path, &db); CHECK(status.ok()) << "Failed to open leveldb " << db_path << ". Is it already existing?"; batch = new leveldb::WriteBatch(); } else if (db_backend == "lmdb") { // lmdb LOG(INFO) << "Opening lmdb " << db_path; CHECK_EQ(mkdir(db_path, 0744), 0) << "mkdir " << db_path << "failed"; CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed"; CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS) // 1TB << "mdb_env_set_mapsize failed"; CHECK_EQ(mdb_env_open(mdb_env, db_path, 0, 0664), MDB_SUCCESS) << "mdb_env_open failed"; CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS) << "mdb_txn_begin failed"; CHECK_EQ(mdb_open(mdb_txn, NULL, 0, &mdb_dbi), MDB_SUCCESS) << "mdb_open failed. Does the lmdb already exist? "; } else { LOG(FATAL) << "Unknown db backend " << db_backend; } // Storing to db char label; char* pixels = new char[rows * cols]; int count = 0; const int kMaxKeyLength = 10; char key_cstr[kMaxKeyLength]; string value; Datum datum; datum.set_channels(1); datum.set_height(rows); datum.set_width(cols); LOG(INFO) << "A total of " << num_items << " items."; LOG(INFO) << "Rows: " << rows << " Cols: " << cols; for (int item_id = 0; item_id < num_items; ++item_id) { image_file.read(pixels, rows * cols); label_file.read(&label, 1); datum.set_data(pixels, rows*cols); datum.set_label(label); snprintf(key_cstr, kMaxKeyLength, "%08d", item_id); datum.SerializeToString(&value); string keystr(key_cstr); // Put in db if (db_backend == "leveldb") { // leveldb batch->Put(keystr, value); } else if (db_backend == "lmdb") { // lmdb mdb_data.mv_size = value.size(); mdb_data.mv_data = reinterpret_cast<void*>(&value[0]); mdb_key.mv_size = keystr.size(); mdb_key.mv_data = reinterpret_cast<void*>(&keystr[0]); CHECK_EQ(mdb_put(mdb_txn, mdb_dbi, &mdb_key, &mdb_data, 0), MDB_SUCCESS) << "mdb_put failed"; } else { LOG(FATAL) << "Unknown db backend " << db_backend; } if (++count % 1000 == 0) { // Commit txn if (db_backend == "leveldb") { // leveldb db->Write(leveldb::WriteOptions(), batch); delete batch; batch = new leveldb::WriteBatch(); } else if (db_backend == "lmdb") { // lmdb CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS) << "mdb_txn_commit failed"; CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS) << "mdb_txn_begin failed"; } else { LOG(FATAL) << "Unknown db backend " << db_backend; } } } // write the last batch if (count % 1000 != 0) { if (db_backend == "leveldb") { // leveldb db->Write(leveldb::WriteOptions(), batch); delete batch; delete db; } else if (db_backend == "lmdb") { // lmdb CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS) << "mdb_txn_commit failed"; mdb_close(mdb_env, mdb_dbi); mdb_env_close(mdb_env); } else { LOG(FATAL) << "Unknown db backend " << db_backend; } LOG(ERROR) << "Processed " << count << " files."; } delete pixels; } int main(int argc, char** argv) { #ifndef GFLAGS_GFLAGS_H_ namespace gflags = google; #endif gflags::SetUsageMessage("This script converts the MNIST dataset to\n" "the lmdb/leveldb format used by Caffe to load data.\n" "Usage:\n" " convert_mnist_data [FLAGS] input_image_file input_label_file " "output_db_file\n" "The MNIST dataset could be downloaded at\n" " http://yann.lecun.com/exdb/mnist/\n" "You should gunzip them after downloading," "or directly use data/mnist/get_mnist.sh\n"); gflags::ParseCommandLineFlags(&argc, &argv, true); const string& db_backend = FLAGS_backend; if (argc != 4) { gflags::ShowUsageWithFlagsRestrict(argv[0], "examples/mnist/convert_mnist_data"); } else { google::InitGoogleLogging(argv[0]); convert_dataset(argv[1], argv[2], argv[3], db_backend); } return 0; }
在编译caffe时,使用一下make install,这样会生成一个install 目录,目录底下有include lib tools三个目录
现在我们来配置nsight
properties->settings->c++ includes->:
(caffe根目录换成你自己的)
/home/zhxfl/cuda-workspace/caffe/build/install/include
/home/zhxfl/cuda-workspace/caffe/build/src/
/usr/local/cuda/include
properties->build->settings->GCC C++ Compiler->Miscellaneous->选上-fPIC选项
properties->build->settings->GCC C++ Linker->Libraries-> 填上如下依赖的动态库。
caffe
proto
caffe_cu
leveldb
snappy
protobuf
gflags
glog
lmdb
properties->build->settings->GCC C++ Linker->Libraries search path(-L) -> 填上如下依赖的动态库目录。
/usr/local/lib
/home/zhxfl/cuda-workspace/caffe/build/install/lib