Given an unsorted array, find the maximum difference between the successive elements in its sorted form. Try to solve it in linear time/space. Return 0 if the array contains less than 2 elements. You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
假设有N个元素A到B。
那么最大差值不会小于ceiling[(B - A) / (N - 1)]
令bucket(桶)的大小len = ceiling[(B - A) / (N - 1)]
对于数组中的任意整数K,很容易通过算式loc = (K - A) / len找出其桶的位置,然后维护每一个桶的最大值和最小值
由于同一个桶内的元素之间的差值至多为len - 1,因此最终答案不会从同一个桶中选择。
对于每一个非空的桶p,找出下一个非空的桶q,则q.min - p.max可能就是备选答案。返回所有这些可能值中的最大值。
这里A是min,B是max,桶有num.length - 1个。min, max不参与放入桶中,除了min和max之外还有N-2个数字和N-1个桶,所以一定有一个空桶。因为有空桶的存在所以要用一个previous变量来代表上一个非空的桶的max。previous初始化为min,这样min就考虑了虽然min不在桶中。还要记得考虑max,所以最后遍历了桶之后还要再比一次max
本算法O(n)时间和空间
还要注意math.floor,不能用,要用math.ceil比如:2/2.667 = 0.7499062617172854, 期望是:1,但是floor会给0,ceil才能给1.
1 public class Solution { 2 public int maximumGap(int[] num) { 3 if (num == null || num.length < 2) 4 return 0; 5 // get the max and min value of the array 6 int min = num[0]; 7 int max = num[0]; 8 for (int i:num) { 9 min = Math.min(min, i); 10 max = Math.max(max, i); 11 } 12 // the minimum possibale gap, ceiling of the integer division 13 int gap = (int)Math.ceil((double)(max - min)/(num.length - 1)); 14 int[] bucketsMIN = new int[num.length - 1]; // store the min value in that bucket 15 int[] bucketsMAX = new int[num.length - 1]; // store the max value in that bucket 16 Arrays.fill(bucketsMIN, Integer.MAX_VALUE); 17 Arrays.fill(bucketsMAX, Integer.MIN_VALUE); 18 // put numbers into buckets 19 for (int i:num) { 20 if (i == min || i == max) 21 continue; 22 int idx = (i - min) / gap; // index of the right position in the buckets 23 bucketsMIN[idx] = Math.min(i, bucketsMIN[idx]); 24 bucketsMAX[idx] = Math.max(i, bucketsMAX[idx]); 25 } 26 // scan the buckets for the max gap 27 int maxGap = Integer.MIN_VALUE; 28 int previous = min; 29 for (int i = 0; i < num.length - 1; i++) { 30 if (bucketsMIN[i] == Integer.MAX_VALUE && bucketsMAX[i] == Integer.MIN_VALUE) 31 // empty bucket 32 continue; 33 // min value minus the previous value is the current gap 34 maxGap = Math.max(maxGap, bucketsMIN[i] - previous); 35 // update previous bucket value 36 previous = bucketsMAX[i]; 37 } 38 maxGap = Math.max(maxGap, max - previous); // updata the final max value gap 39 return maxGap; 40 } 41 }