spoj 10628

http://www.spoj.com/problems/COT/ 树上第k小元素

LCA + 可持久化线段树

每个新的版本都是由其父亲版本转化而来。

  1 #include <cstdio>

  2 #include <iostream>

  3 #include <algorithm>

  4 #include <cstring>

  5 

  6 using namespace std;

  7 

  8 const int maxn = 1e5 + 5;

  9 const int maxd = 20;

 10 struct Edge{

 11     int v, next;

 12 }p[maxn << 1];

 13 int head[maxn], e, d[maxn], f[maxn][maxd];

 14 //LCA

 15 void init(){

 16     memset(d, 0, sizeof(d));

 17     memset(f, 0, sizeof(f));

 18     memset(head, -1, sizeof(head));

 19     e = 0;

 20 }

 21 void addEdge(int u, int v){

 22     p[e].v = v; p[e].next = head[u]; head[u] = e++;

 23     swap(u, v);

 24     p[e].v = v; p[e].next = head[u]; head[u] = e++;

 25 }

 26 int lca(int u, int v){

 27     if (d[u] < d[v]) swap(u, v);

 28     int k = d[u] - d[v];

 29     for (int i = 0; i < maxd;  ++i)

 30         if ((1 << i) & k) u = f[u][i];

 31     if (u == v) return u;

 32     for (int i = maxd - 1; i >= 0; --i){

 33         if (f[u][i] != f[v][i]){

 34             u = f[u][i];

 35             v = f[v][i];

 36         }

 37     }

 38     return f[u][0];

 39 }

 40 //CMT

 41 int ls[maxn * 40], rs[maxn * 40], sum[maxn * 40], T[maxn], tot, rt;

 42 int num[maxn], san[maxn], n, m; // 离散化前点数,离散化后点数 

 43 void init_hash(){

 44     for (int i = 1; i <= n; ++i) san[i] = num[i];

 45     sort(san + 1, san + n + 1);

 46     m = unique(san + 1, san + n + 1) - san - 1;

 47 }

 48 int hash(int x){

 49     return lower_bound(san + 1, san + m + 1, x) - san;

 50 }

 51 void build(int l, int r, int& rt){

 52     rt = ++ tot; sum[rt] = 0;

 53     if (l == r) return;

 54     int mid = (l + r) >> 1;

 55     build(l, mid, ls[rt]);

 56     build(mid + 1, r, rs[rt]);

 57 }

 58 void update(int last, int pos, int l, int r, int& rt){

 59     rt = ++ tot;

 60     ls[rt] = ls[last], rs[rt] = rs[last], sum[rt] = sum[last] + 1;

 61     if (l == r) return ;

 62     int mid = (l + r) >> 1;

 63     if (pos <= mid) update(ls[last], pos, l, mid, ls[rt]);

 64     else update(rs[last], pos, mid + 1, r, rs[rt]);

 65 }

 66 int query(int pos, int left_rt, int right_rt, int lca_rt, int l, int r, int k){

 67     if (l == r) return l;

 68     int mid = (l + r) >> 1;

 69     int cnt = sum[ls[left_rt]] + sum[ls[right_rt]] - 2 * sum[ls[lca_rt]] + (pos >= l && pos <= mid);//注意lca为跟的时候

 70     if (k <= cnt) return query(pos, ls[left_rt], ls[right_rt], ls[lca_rt], l, mid, k);

 71     else return query(pos, rs[left_rt], rs[right_rt], rs[lca_rt], mid + 1, r, k - cnt);

 72 }

 73 //LCA && CMT

 74 void dfs(int u, int fa){

 75     f[u][0] = fa;//注意

 76     d[u] = d[f[u][0]] + 1;

 77     update(T[fa], hash(num[u]), 1, m, T[u]);

 78     for (int i = 1; i < maxd; ++i) f[u][i] = f[ f[u][i - 1] ][i - 1];

 79     for (int i = head[u]; ~i; i = p[i].next){

 80         if (p[i].v == fa) continue;

 81         dfs(p[i].v, u);

 82     }

 83 }

 84 int main(){

 85     int q, u, v, k;

 86     while (scanf("%d%d", &n, &q) == 2){

 87         for (int i = 1; i <= n; ++i) scanf("%d", &num[i]);

 88         init();

 89         init_hash();

 90         tot = 0;

 91         for (int i = 1; i < n; ++i){

 92             scanf("%d%d", &u, &v);

 93             addEdge(u, v);

 94         }

 95         build(1, m, T[0]);

 96         dfs(1, 0);

 97         while (q--){

 98             scanf("%d%d%d", &u, &v, &k);

 99             printf("%d\n",san[query(hash(num[lca(u, v)]), T[u], T[v], T[lca(u, v)],1, m, k)]);

100         }

101     }

102     return 0;

103 }

 

你可能感兴趣的:(poj)