常见积性函数(转自百科)

前面做hdu1452 用过积性函数这个东西。。。刚才遇到又不会了。所以弄一点资料提醒一下自己

在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。  

在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。

若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。[1]

s(6)=s(2)*s(3)=3*4=12;

s(20)=s(4)*s(5)=7*6=42;

再看 s(50)= 1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.

这在数论中叫积性函数,当gcd(a,b)=1时 s(a*b)=s(a)*s(b);

性质1

  积性函数的值完全由质数的幂决定,这和算术基本定理有关。

即是说,若将n表示成质因子分解式

 

则有

 

性质2

      若f为积性函数且有

 

       则f为完全积性函数。

积性

  φ(n) -欧拉函数,计算与n互质的正整数之数目

  μ(n) -莫比乌斯函数,关于非平方数的质因子数目

  gcd(n,k)-最大公因子,当k固定的情况

  d(n) -n的正因子数目

  σ(n) -n的所有正因子之和

  σk(n)-因子函数,n的所有正因子的k次之和,当中k可为任何复数

  1(n) -不变的函数,定义为 1(n) = 1 (完全积性)

  Id(n)-单位函数,定义为 Id(n) = n(完全积性)

  Idk(n)-幂函数,对于任何复数、实数k,定义为Idk(n) = n^k(完全积性)

  ε(n) -定义为:若n = 1,ε(n)=1;若 n > 1,ε(n)=0。别称为“对于狄利克雷卷积的乘法单位”(完全积性)

  λ(n) -刘维尔函数,关于能整除n的质因子的数目

  γ(n),定义为γ(n)=(-1)^ω(n),在此加性函数ω(n)是不同能整除n的质数的数目

另外,所有狄利克雷特征均是完全积性的[1]

非积性

  冯·曼戈尔特函数:当n是质数p的整数幂,Λ(n)=ln(p),否则Λ(n)=0

  不大于正整数n的质数的数目π(n)

  整数拆分的数目P(n):一个整数能表示成正整数之和的方法的数目[2]

你可能感兴趣的:(函数)