- 冒泡排序:经典算法的深度解析与TypeScript实现
念九_ysl
算法算法typescript排序算法
/***基础冒泡排序实现(升序)*@paramarr待排序数组*@returns已排序数组*/functionbubbleSortBasic(arr:number[]):number[]{constn=arr.length;for(leti=0;iarr[j+1]){//交换相邻元素[arr[j],arr[j+1]]=[arr[j+1],arr[j]];}}}returnarr;}/***优化版冒
- 【蓝桥杯算法练习】205. 反转字符串中的字符(含思路 + Python / C++ / Java代码)
滴答滴答滴嗒滴
蓝桥杯蓝桥杯算法python
【蓝桥杯算法练习】205.反转字符串中的字符(含思路+Python/C++/Java代码)题目描述给定一个字符串s,请你将字符串中的英文字母字符反转,但其他非字母字符保持在原位置,输出处理后的字符串。示例:输入:s="a-bC-dEf-ghIj"输出:"j-Ih-gfE-dCba"解题思路这道题的关键在于两个点:双指针:从前后同时扫描,只对字母字符进行交换;保留非字母位置:如果当前位置是非字母,跳
- 基于区块链技术的金融服务的架构设计、关键技术要素的选择、具体应用场景以及未来的发展趋势与挑战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着移动支付、银行卡发行等金融服务的普及,传统商业模式面临越来越多的挑战。其中最重要的是保障用户信息安全的需求,防止个人隐私泄露,保障金融数据的完整性,有效应对各种金融风险,从而实现价值的实现。区块链技术作为一种全新的分布式账本技术已经成为解决这些问题的一种途径。它可以记录所有发生的交易,并通过加密算法将数据不可篡改,确保交易信息真实可靠、完整准确,提供可追溯、
- [2025年最新]关于使用python和Java调用AI大模型
尤物程序猿
pythonjava人工智能
一、AI算法的核心概念与原理AI算法,即人工智能算法,是让计算机模拟人类智能行为、从数据中学习并进行决策的一系列数学方法与规则集合。其核心目标是赋予机器从经验中学习、对未知情况做出合理判断与决策的能力。机器学习是AI算法的重要基础领域,它使计算机能基于数据进行学习并改进性能。监督学习作为机器学习的关键分支,依靠已标记数据进行模型训练。例如在图像分类任务中,为算法提供大量已标注好类别(如“猫”“狗”
- C++ STL常用算法
会思想的苇草i
C++c++算法开发语言stl经验分享
C++STL常用算法STL-常用算法1常用遍历算法1.1for_each1.2transform2常用查找算法2.1find2.2find_if2.3adjacent_find2.4binary_search2.5count2.6count_if3常用排序算法3.1sort3.2random_shuffle3.3merge3.4reverse4常用拷贝和替换算法4.1copy4.2replace4
- 蓝桥杯备考---》贪心算法之矩阵消除游戏
无敌大饺子 dot
贪心算法游戏算法
我们第一次想到的贪心策略一定是找出和最大的行或者列来删除,每次都更新行和列比如如图这种情况,这种情况就不如直接删除两行的多,所以本贪心策略有误so我们可以枚举选的行的情况,然后再贪心的选择列和最大的列来做#include#include#includeusingnamespacestd;intn,m,k;typedeflonglongll;constintN=20;intsum;intcol[N]
- TF-IDF算法及sklearn实现
雪顶猫的鳄
pythontf-idf算法sklearnpython
一、TF-IDF算法介绍TF-IDF(termfrequency-inversedoumentfrequency,词频-逆向文档频率)是一种用于信息检索(informationretrieval)与文本挖掘(textmining)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对与一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比的增加,但同时会
- TF-IDF算法详解
听风Q
NLPtf-idf算法深度学习nlp机器学习
文章目录TF-IDF算法TF-IDF算法介绍TF=>词频(TermFrequency)IDF=>逆向文件频率(InverseDocumentFrequency)TF-IDF实际上是:TF*IDFpython3实现NLTK实现Sklearn实现jiaba实现TF-IDF算法缺点TF-IWF算法TF-IDF算法TF-IDF算法介绍TF-IDF(termfrequency–inversedocument
- 算法之Java动态连通性问题:union-find算法解析
一杯年华@编程空间
算法精讲算法java性能优化
算法之Java动态连通性问题:union-find算法解析在编程的学习旅程中,不断探索新的算法和数据结构是提升能力的关键。今天,我们一起深入研究Java中处理动态连通性问题的union-find算法,从问题的定义、API的设计,到具体的算法实现,希望能和大家共同进步,让我们的编程技能更上一层楼!一、动态连通性问题与union-find算法概述在实际编程场景中,经常会遇到需要判断元素之间连接关系的问
- python以图搜图api_以图搜图(二):python dHash算法
啟潍
python以图搜图api
differentHash算法dHash中文叫差异哈希算法,在对图片进行哈希转换时,通过左右两个像素大小的比较,得到最终哈希序列。相比于aHash算法。dHash速度快,判断效果也要好。实现过程缩小尺寸。将图片缩小为9*8大小,此时照片有72个像素点。灰度化处理。计算差异值,获得最后哈希值(与aHash主要区别处)。比较每行左右两个像素,如果左边的像素比右边的更亮(左边像素值大于右边像素值),则记
- 大模型提示优化|双模型协作优化:迭代效率飙升300%!破局人工试错的智能优化方案
CodePatentMaster
人工智能
颠覆性突破!百度智能提示优化技术让大模型迭代效率提升300%核心价值北京百度网讯科技通过双模型协作优化机制实现提示文本生成效率提升3倍,解决传统Prompt工程人力成本高、评估标准缺失的行业难题。一、技术原理深度剖析痛点定位传统Prompt优化存在三大致命缺陷:人工试错平均耗时72小时/次评估依赖黄金答案标注成本高复杂场景优化成功率不足40%算法突破采用双模型协作架构:LLM1(生成模型)→执行P
- 大模型训练|动态梯度压缩+混合精度架构:显存直降65%、效率飙升300%!攻克显存爆炸与带宽瓶颈
CodePatentMaster
架构
革命性创新!百度自研动态梯度压缩技术让大模型训练效率提升300%核心价值北京百度网讯科技有限公司通过动态梯度压缩算法(DynamicGradientCompression,DGC)与混合精度分布式训练框架,实现训练速度提升300%、显存占用降低65%,解决大模型训练中显存资源浪费与通信带宽瓶颈问题。一、技术原理深度剖析痛点定位当前大模型训练面临两大核心难题:显存占用过高:传统全精度训练(FP32)
- C/C++蓝桥杯算法真题打卡(Day5)
Exhausted、
蓝桥杯c语言c++蓝桥杯
一、P8772[蓝桥杯2022省A]求和-洛谷算法代码:#include//包含标准库中的所有头文件,方便编程usingnamespacestd;//使用标准命名空间,避免每次调用标准库函数时都要加std::intmain(){intn;//声明一个整数变量n,用于存储输入的整数个数cin>>n;//从标准输入读取n的值vectora(n);//声明一个大小为n的整数向量a,用于存储输入的n个整数
- 多智能体协作|动态任务分解算法:复杂任务处理效率飙升200%!突破实时响应瓶颈的异步架构方案
CodePatentMaster
算法架构
颠覆性突破!百度多智能体协作技术让复杂任务处理效率提升200%[核心价值]北京百度网讯科技有限公司通过多智能体异步协作架构实现任务处理效率提升200%,解决大模型时代复杂任务拆解与实时反馈难题一、技术原理深度剖析痛点定位当前智能体技术面临三大挑战:全栈式处理瓶颈:单一智能体处理复杂任务时存在显存占用高、响应延迟大(传统方案延迟>5s)即时信息处理真空:87%的查询类任务需要实时外部验证(如餐厅订座
- 每日一博 - 一致性哈希:分布式系统的数据分配利器
小小工匠
【每日一博】哈希算法一致性哈希
文章目录概述1、一致性哈希算法的诞生背景2、一致性哈希的基本原理3、一致性哈希的优势和挑战4、虚拟节点的引入5、Java代码实现概述在现代分布式系统中,如何高效地将数据分布在多个服务器上,同时保证扩展性和容错性,是一个至关重要的问题。一致性哈希算法(ConsistentHashing)正是为了解决这些挑战而设计的。今天,我们来深入探讨这个经典的分布式算法,包括它的基本原理、优缺点,以及实际应用中的
- 目标检测YOLO实战应用案例100讲-交通目标数据集构建及高性能检测算法研究与应用
林聪木
目标检测YOLO算法
目录前言国内外研究现状目标检测研究现状目标检测数据集研究现状基于深度学习的通用目标检测方法2.1数据集构建2.2基于深度学习的目标检测框架2.2.1双阶段检测算法分析2.2.2YOLO系列单阶段检测算法分析2.3多标签分类检测交通多样化数据集构建3.1交通场景的特点3.2数据集构建准备3.2.1现有数据集特点3.2.2样本数据采集流程3.3基于LabelImg的标注优化工具3.3.1目标预检测功能
- 计算机视觉技术的优势与挑战:深入探讨与未来展望
猿享天开
技术杂汇计算机视觉CV
目录计算机视觉技术的优势与挑战:深入探讨与未来展望计算机视觉技术的优势1.高效处理大量数据2.自动化和高精度3.实时应用4.多领域应用计算机视觉技术的挑战1.数据质量和多样性2.复杂场景和语义理解3.训练数据和算法设计4.隐私与安全问题未来展望1.数据增强与合成2.多模态学习3.轻量化模型4.隐私保护与安全保障结语计算机视觉(ComputerVision,CV)技术是一种利用计算机和算法来模拟和实
- 基于深度学习的烟雾检测系统——YOLOv5、YOLOv8、YOLOv10及UI界面的实现
深度学习YOLO目标检测实战项目
深度学习YOLOui人工智能分类
引言随着科技的进步,深度学习在计算机视觉中的应用得到了广泛的应用,尤其在烟雾检测领域,具有重要的意义。烟雾检测系统不仅有助于火灾的预防与早期发现,还在工业、交通等领域有着广泛的需求。近年来,YOLO(YouOnlyLookOnce)系列目标检测算法的快速发展,为烟雾检测提供了强大的支持。在本篇博客中,我们将深入探讨如何利用YOLOv5、YOLOv8、YOLOv10来构建一个高效的烟雾检测系统,并设
- STL新增内容
越甲八千
【道阻且长C++】【C++STL】c++算法开发语言
文章目录C++11中的STL新增内容容器算法C++14中的STL新增内容容器算法C++17中的STL新增内容容器算法C++20中的STL新增内容容器算法C++11中的STL新增内容容器std::array:这是一个固定大小的数组容器,和原生数组类似,但具备更好的接口与安全性。它在栈上分配内存,大小在编译时确定。#include#includeintmain(){std::arrayarr={1,2
- 计算机视觉算法实战——烟雾检测
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.烟雾检测领域介绍烟雾检测是计算机视觉在公共安全领域的重要应用,它通过分析视频或图像序列中的视觉特征,自动识别烟雾的存在,为火灾预警提供关键技术支持。相比传统基于物理传感器的烟雾探测器,基于视觉的烟雾检测系统具有以下优势:监测范围广:单摄像头可覆盖大面积区域非接触式检测:无需近距离接
- C++位运算精要:高效解题的利器
星途码客
c++算法c++java算法
引言在算法竞赛和底层开发中,位运算(BitManipulation)因其极高的执行效率而广受青睐。它能在O(1)时间复杂度内完成某些复杂操作,大幅优化程序性能。本文系统梳理C++位运算的核心技巧,涵盖基础操作、经典应用、优化策略及实战例题,帮助读者掌握这一高效工具。一、位运算基础1.六大基本操作运算符名称示例(二进制)说明&按位与1010&1100=1000同1为1,否则为0|按位或1010|11
- A10应用优化与高效部署实战
智能计算研究中心
其他
内容概要A10应用优化与高效部署涉及从基础架构设计到资源管理的全流程技术实践。本文将从核心配置原则、部署策略设计、性能调优路径三大维度展开论述,重点剖析负载均衡算法选择、会话保持机制配置、硬件资源动态分配等关键技术环节。通过对比基准测试数据、解读压力场景下的系统响应曲线等方式,系统阐述如何平衡吞吐量与延迟的关系,同时结合自动化编排工具实现部署效率的跃升。文中深度拆解的银行交易系统扩容案例与电商大促
- 模型优化技术演进与行业场景突破
智能计算研究中心
其他
内容概要模型优化技术正经历从算法改进到系统级创新的范式跃迁。随着自动化机器学习(AutoML)与联邦学习技术的成熟,模型开发效率与隐私保护能力显著提升,而模型压缩技术则推动轻量化部署在边缘计算场景中加速落地。与此同时,量子计算为优化算法提供了新的计算维度,MXNet、PyTorch等框架通过动态计算图特性,在医疗影像识别和语音交互领域实现推理速度的突破性进展。技术演进阶段核心技术突破典型应用场景主
- 前沿算法优化与多场景应用实践
智能计算研究中心
其他
内容概要《前沿算法优化与多场景应用实践》围绕算法技术的创新与落地,系统性梳理了从底层理论到场景化落地的关键路径。在基础算法层,量子算法通过叠加态与纠缠态特性突破经典计算瓶颈,联邦学习结合差分隐私与模型聚合技术构建分布式安全框架,生成对抗网络(GAN)则通过生成器与判别器的动态博弈优化图像合成效果。与此同时,可解释性算法通过特征重要性分析与决策树可视化提升模型透明度,超参数调优策略则结合贝叶斯优化与
- 智能模型优化与跨行业应用趋势
智能计算研究中心
其他
内容概要智能模型优化技术正经历多维度的范式突破,从算法架构到部署模式均呈现显著变革。核心演进路径涵盖三大维度:在技术层,自动化机器学习(AutoML)与自适应学习优化技术大幅降低建模门槛,结合超参数优化与正则化方法,实现模型性能与效率的平衡;在架构层,边缘计算与联邦学习推动分布式模型部署,MXNet、PyTorch等框架通过模型压缩与量化技术,适配低功耗设备部署需求;在应用层,医疗诊断、金融预测等
- 算法竞赛备赛——【数据结构】二叉树
Aurora_wmroy
算法竞赛备赛算法数据结构c++蓝桥杯
二叉树二叉树的问题大多基于递归实现(面试较多力扣的二叉树的题会多一些竞赛遇到的较少)n个节点x个度为0的节点有x-1个度为2的节点(线的总数2n2+n1=n2+n1+n0-1)n0=n2+1有一个先序序列1234,有___棵树二叉树满足这个先序序列:卡特兰数:C2nn/(n+1)C^{n}_{2n}/(n+1)C2nn/(n+1)先序+中序可以确定一棵树先序对应入栈中序对应出栈顺序用卡特兰数可求L
- 数字图像处理 -- 霍夫曼编码(无损压缩)练习
_安晓
数字图像处理图像处理计算机视觉人工智能
算法的设计说明目标对彩色图像进行压缩,使用霍夫曼编码方法对图像的每个像素进行编码,从而减少其存储空间。解码时,能够恢复图像的原始像素数据,确保图像在经过压缩和解压后与原图像一致。输入原始图像(以RGB格式存储)霍夫曼编码的输入是图像的像素数据(RGB元组),每个像素表示为一个(R,G,B)的三元组输出霍夫曼编码后的图像数据(以二进制字符串形式存储)解码后的图像(还原为原始的RGB图像)算法设计1.
- Python----机器学习(基于PyTorch的线性回归)
蹦蹦跳跳真可爱589
Pytroch机器学习Python机器学习pythonpytorch人工智能线性回归
一、自求导线性回归与PyTorch的区别自求导线性回归:需要手动定义参数ww(权重)和bb(偏置)。通过数学公式求导,以便在反向传播中更新参数,通常使用梯度下降法来降低损失值。PyTorch实现:自动处理梯度计算和参数更新。使用框架内置的自动微分机制,简化实现过程。主要精力放在准备数据、定义模型以及选择损失函数和优化器上。二、数据准备和模型定义在使用PyTorch实现线性回归算法时,我们需要准备好
- squarified算法
淬渊阁
算法算法c++qt数据结构前端
其他参考资料:https://www.docin.com/p-1509919023.htmlSquarifiedTreemaps论文算法复现_squarified算法-CSDN博客手绘草图,发觉之前网上很多的图都会误导大家去理解算法前处理1首先对输入数据进行排序2对数据数据总和和窗口面积进行等比换手。算法基本思路:原始数据:{6,6,4,3,2,2,1}step1:首先确认最短边,将第一个元素6放
- JobFit AI-帮你找到合适的工作
数据分析能量站
机器学习人工智能
JobFitAI是一个全面的简历分析项目,旨在通过人工智能技术优化招聘流程和人才匹配。核心功能简历解析与评估:利用先进的自然语言处理(NLP)和机器学习技术,JobFitAI能够快速解析简历内容,提取关键信息,如工作经历、教育背景、技能等,并对简历的整体质量进行评估。岗位匹配算法:基于大量的岗位数据和人才画像,JobFitAI通过智能匹配算法,将候选人的简历与岗位要求进行精准匹配,帮助招聘人员快速
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod