C#的加密解密算法,包括Silverlight的MD5算法
下面是一段加密解密工具类,其中的WinFormMD5Encrypt方法可以使得Winform和WebForm下的MD5加密结果一致,默认他们是不一样的。
实例代码下载:/Files/virusswb/ConsoleApplication1.rar
代码
<summary>
///
但是在Silverlight,你会发现如果想用MD5加密,可是不能用WinForm下面的MD5Provider,Silverlight项目就不能添加System.Security命名空间,只好自定义MD5加密了,不用愁,老外已经给我们写好了一个。
Silverlight MD5
<summary>
/// Summary description for MD5.
/// </summary>
public class MD5 : IDisposable
{
static public MD5 Create(string hashName)
{
if (hashName == "MD5")
return new MD5();
else
throw new NotSupportedException();
}
static public String GetMd5String(String source)
{
MD5 md = MD5CryptoServiceProvider.Create();
byte[] hash;
//Create a new instance of ASCIIEncoding to
//convert the string into an array of Unicode bytes.
UTF8Encoding enc = new UTF8Encoding();
// ASCIIEncoding enc = new ASCIIEncoding();
//Convert the string into an array of bytes.
byte[] buffer = enc.GetBytes(source);
//Create the hash value from the array of bytes.
hash = md.ComputeHash(buffer);
StringBuilder sb = new StringBuilder();
foreach (byte b in hash)
sb.Append(b.ToString("x2"));
return sb.ToString();
}
static public MD5 Create()
{
return new MD5();
}
#region base implementation of the MD5
#region constants
private const byte S11 = 7;
private const byte S12 = 12;
private const byte S13 = 17;
private const byte S14 = 22;
private const byte S21 = 5;
private const byte S22 = 9;
private const byte S23 = 14;
private const byte S24 = 20;
private const byte S31 = 4;
private const byte S32 = 11;
private const byte S33 = 16;
private const byte S34 = 23;
private const byte S41 = 6;
private const byte S42 = 10;
private const byte S43 = 15;
private const byte S44 = 21;
static private byte[] PADDING = new byte[] {
0x80, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#endregion
#region F, G, H and I are basic MD5 functions.
static private uint F(uint x, uint y, uint z)
{
return (((x) & (y)) | ((~x) & (z)));
}
static private uint G(uint x, uint y, uint z)
{
return (((x) & (z)) | ((y) & (~z)));
}
static private uint H(uint x, uint y, uint z)
{
return ((x) ^ (y) ^ (z));
}
static private uint I(uint x, uint y, uint z)
{
return ((y) ^ ((x) | (~z)));
}
#endregion
#region rotates x left n bits.
/// <summary>
/// rotates x left n bits.
/// </summary>
/// <param name="x"></param>
/// <param name="n"></param>
/// <returns></returns>
static private uint ROTATE_LEFT(uint x, byte n)
{
return (((x) << (n)) | ((x) >> (32 - (n))));
}
#endregion
#region FF, GG, HH, and II transformations
/// FF, GG, HH, and II transformations
/// for rounds 1, 2, 3, and 4.
/// Rotation is separate from addition to prevent recomputation.
static private void FF(ref uint a, uint b, uint c, uint d, uint x, byte s, uint ac)
{
(a) += F((b), (c), (d)) + (x) + (uint)(ac);
(a) = ROTATE_LEFT((a), (s));
(a) += (b);
}
static private void GG(ref uint a, uint b, uint c, uint d, uint x, byte s, uint ac)
{
(a) += G((b), (c), (d)) + (x) + (uint)(ac);
(a) = ROTATE_LEFT((a), (s));
(a) += (b);
}
static private void HH(ref uint a, uint b, uint c, uint d, uint x, byte s, uint ac)
{
(a) += H((b), (c), (d)) + (x) + (uint)(ac);
(a) = ROTATE_LEFT((a), (s));
(a) += (b);
}
static private void II(ref uint a, uint b, uint c, uint d, uint x, byte s, uint ac)
{
(a) += I((b), (c), (d)) + (x) + (uint)(ac);
(a) = ROTATE_LEFT((a), (s));
(a) += (b);
}
#endregion
#region context info
/// <summary>
/// state (ABCD)
/// </summary>
uint[] state = new uint[4];
/// <summary>
/// number of bits, modulo 2^64 (lsb first)
/// </summary>
uint[] count = new uint[2];
/// <summary>
/// input buffer
/// </summary>
byte[] buffer = new byte[64];
#endregion
internal MD5()
{
Initialize();
}
/// <summary>
/// MD5 initialization. Begins an MD5 operation, writing a new context.
/// </summary>
/// <remarks>
/// The RFC named it "MD5Init"
/// </remarks>
public virtual void Initialize()
{
count[0] = count[1] = 0;
// Load magic initialization constants.
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;
}
/// <summary>
/// MD5 block update operation. Continues an MD5 message-digest
/// operation, processing another message block, and updating the
/// context.
/// </summary>
/// <param name="input"></param>
/// <param name="offset"></param>
/// <param name="count"></param>
/// <remarks>The RFC Named it MD5Update</remarks>
protected virtual void HashCore(byte[] input, int offset, int count)
{
int i;
int index;
int partLen;
// Compute number of bytes mod 64
index = (int)((this.count[0] >> 3) & 0x3F);
// Update number of bits
if ((this.count[0] += (uint)((uint)count << 3)) < ((uint)count << 3))
this.count[1]++;
this.count[1] += ((uint)count >> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (count >= partLen)
{
Buffer.BlockCopy(input, offset, this.buffer, index, partLen);
Transform(this.buffer, 0);
for (i = partLen; i + 63 < count; i += 64)
Transform(input, offset + i);
index = 0;
}
else
i = 0;
// Buffer remaining input
Buffer.BlockCopy(input, offset + i, this.buffer, index, count - i);
}
/// <summary>
/// MD5 finalization. Ends an MD5 message-digest operation, writing the
/// the message digest and zeroizing the context.
/// </summary>
/// <returns>message digest</returns>
/// <remarks>The RFC named it MD5Final</remarks>
protected virtual byte[] HashFinal()
{
byte[] digest = new byte[16];
byte[] bits = new byte[8];
int index, padLen;
// Save number of bits
Encode(bits, 0, this.count, 0, 8);
// Pad out to 56 mod 64.
index = (int)((uint)(this.count[0] >> 3) & 0x3f);
padLen = (index < 56) ? (56 - index) : (120 - index);
HashCore(PADDING, 0, padLen);
// Append length (before padding)
HashCore(bits, 0, 8);
// Store state in digest
Encode(digest, 0, state, 0, 16);
// Zeroize sensitive information.
count[0] = count[1] = 0;
state[0] = 0;
state[1] = 0;
state[2] = 0;
state[3] = 0;
// initialize again, to be ready to use
Initialize();
return digest;
}
/// <summary>
/// MD5 basic transformation. Transforms state based on 64 bytes block.
/// </summary>
/// <param name="block"></param>
/// <param name="offset"></param>
private void Transform(byte[] block, int offset)
{
uint a = state[0], b = state[1], c = state[2], d = state[3];
uint[] x = new uint[16];
Decode(x, 0, block, offset, 64);
// Round 1
FF(ref a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
FF(ref d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
FF(ref c, d, a, b, x[2], S13, 0x242070db); /* 3 */
FF(ref b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
FF(ref a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
FF(ref d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
FF(ref c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
FF(ref b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
FF(ref a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
FF(ref d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
FF(ref c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(ref b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(ref a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(ref d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(ref c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(ref b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
// Round 2
GG(ref a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
GG(ref d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
GG(ref c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(ref b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
GG(ref a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
GG(ref d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(ref c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(ref b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
GG(ref a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
GG(ref d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(ref c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
GG(ref b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
GG(ref a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(ref d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
GG(ref c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
GG(ref b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
// Round 3
HH(ref a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
HH(ref d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
HH(ref c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(ref b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(ref a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
HH(ref d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
HH(ref c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
HH(ref b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(ref a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(ref d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
HH(ref c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
HH(ref b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
HH(ref a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
HH(ref d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(ref c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(ref b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
// Round 4
II(ref a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
II(ref d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II(ref c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(ref b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
II(ref a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(ref d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
II(ref c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(ref b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
II(ref a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
II(ref d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(ref c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
II(ref b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(ref a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II(ref d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(ref c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
II(ref b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
// Zeroize sensitive information.
for (int i = 0; i < x.Length; i++)
x[i] = 0;
}
/// <summary>
/// Encodes input (uint) into output (byte). Assumes len is
/// multiple of 4.
/// </summary>
/// <param name="output"></param>
/// <param name="outputOffset"></param>
/// <param name="input"></param>
/// <param name="inputOffset"></param>
/// <param name="count"></param>
private static void Encode(byte[] output, int outputOffset, uint[] input, int inputOffset, int count)
{
int i, j;
int end = outputOffset + count;
for (i = inputOffset, j = outputOffset; j < end; i++, j += 4)
{
output[j] = (byte)(input[i] & 0xff);
output[j + 1] = (byte)((input[i] >> 8) & 0xff);
output[j + 2] = (byte)((input[i] >> 16) & 0xff);
output[j + 3] = (byte)((input[i] >> 24) & 0xff);
}
}
/// <summary>
/// Decodes input (byte) into output (uint). Assumes len is
/// a multiple of 4.
/// </summary>
/// <param name="output"></param>
/// <param name="outputOffset"></param>
/// <param name="input"></param>
/// <param name="inputOffset"></param>
/// <param name="count"></param>
static private void Decode(uint[] output, int outputOffset, byte[] input, int inputOffset, int count)
{
int i, j;
int end = inputOffset + count;
for (i = outputOffset, j = inputOffset; j < end; i++, j += 4)
output[i] = ((uint)input[j]) | (((uint)input[j + 1]) << 8) | (((uint)input[j + 2]) << 16) | (((uint)input[j + 3]) <<
24);
}
#endregion
#region expose the same interface as the regular MD5 object
protected byte[] HashValue;
protected int State;
public virtual bool CanReuseTransform
{
get
{
return true;
}
}
public virtual bool CanTransformMultipleBlocks
{
get
{
return true;
}
}
public virtual byte[] Hash
{
get
{
if (this.State != 0)
throw new InvalidOperationException();
return (byte[])HashValue.Clone();
}
}
public virtual int HashSize
{
get
{
return HashSizeValue;
}
}
protected int HashSizeValue = 128;
public virtual int InputBlockSize
{
get
{
return 1;
}
}
public virtual int OutputBlockSize
{
get
{
return 1;
}
}
public void Clear()
{
Dispose(true);
}
public byte[] ComputeHash(byte[] buffer)
{
return ComputeHash(buffer, 0, buffer.Length);
}
public byte[] ComputeHash(byte[] buffer, int offset, int count)
{
Initialize();
HashCore(buffer, offset, count);
HashValue = HashFinal();
return (byte[])HashValue.Clone();
}
public byte[] ComputeHash(Stream inputStream)
{
Initialize();
int count = 0;
byte[] buffer = new byte[4096];
while (0 < (count = inputStream.Read(buffer, 0, 4096)))
{
HashCore(buffer, 0, count);
}
HashValue = HashFinal();
return (byte[])HashValue.Clone();
}
public int TransformBlock(
byte[] inputBuffer,
int inputOffset,
int inputCount,
byte[] outputBuffer,
int outputOffset
)
{
if (inputBuffer == null)
{
throw new ArgumentNullException("inputBuffer");
}
if (inputOffset < 0)
{
throw new ArgumentOutOfRangeException("inputOffset");
}
if ((inputCount < 0) || (inputCount > inputBuffer.Length))
{
throw new ArgumentException("inputCount");
}
if ((inputBuffer.Length - inputCount) < inputOffset)
{
throw new ArgumentOutOfRangeException("inputOffset");
}
if (this.State == 0)
{
Initialize();
this.State = 1;
}
HashCore(inputBuffer, inputOffset, inputCount);
if ((inputBuffer != outputBuffer) || (inputOffset != outputOffset))
{
Buffer.BlockCopy(inputBuffer, inputOffset, outputBuffer, outputOffset, inputCount);
}
return inputCount;
}
public byte[] TransformFinalBlock(
byte[] inputBuffer,
int inputOffset,
int inputCount
)
{
if (inputBuffer == null)
{
throw new ArgumentNullException("inputBuffer");
}
if (inputOffset < 0)
{
throw new ArgumentOutOfRangeException("inputOffset");
}
if ((inputCount < 0) || (inputCount > inputBuffer.Length))
{
throw new ArgumentException("inputCount");
}
if ((inputBuffer.Length - inputCount) < inputOffset)
{
throw new ArgumentOutOfRangeException("inputOffset");
}
if (this.State == 0)
{
Initialize();
}
HashCore(inputBuffer, inputOffset, inputCount);
HashValue = HashFinal();
byte[] buffer = new byte[inputCount];
Buffer.BlockCopy(inputBuffer, inputOffset, buffer, 0, inputCount);
this.State = 0;
return buffer;
}
#endregion
protected virtual void Dispose(bool disposing)
{
if (!disposing)
Initialize();
}
public void Dispose()
{
Dispose(true);
}
}
在Silverlight中使用MD5的示例代码
代码
Program
{
static void Main(string[] args)
{
string str="123";
Console.WriteLine(string.Format ("123 encrypt result: {0}",WebMD5Provider.WebFormMD5Encrypt (str )));
Console.WriteLine("---------------------");
MD5CryptoServiceProvider md5Provider = new MD5CryptoServiceProvider();
byte[] encryptedBytes = md5Provider.ComputeHash(Encoding.UTF8 .GetBytes(str ));
StringBuilder sb = new StringBuilder();
for (int i = 0; i < encryptedBytes.Length; i++)
{
sb.AppendFormat("{0:x2}", encryptedBytes[i]);
}
Console.WriteLine(string.Format("123 encrypt result: {0}",sb.ToString ()));
Console.ReadLine();
}
}
byte[] encryptedBytes = md5Provider.ComputeHash(Encoding.UTF8 .GetBytes(str ));中必须使用UTF8,如果使用Unicode就会和System.Security下面提供的方法产生的哈希结果不一致,这里需要注意。
C#的加密解密算法,包括Silverlight的MD5算法,encrypt,silveright