Android Jetpack架构组件之Lifecycle

Lifecycle简介

一直以来,解藕都是软件开发永恒的话题。在Android开发中,解藕很大程度上表现为系统组件的生命周期与普通组件之间的解藕,因为普通组件在使用过程中需要依赖系统组件的的生命周期。

举个例子,我们经常需要在页面的onCreate()方法中对组件进行初始化,然后在onStop()中停止组件,或者在onDestory()方法中对进行进行销毁。事实上,这样的工作非常繁琐,会让页面和页面耦合度变高,但又不得不做,因为如果不即时的释放资源,有可能会导致内存泄露。例如,下面是一个在Activity的不同生命周期方法中监听调用的例子,代码如下。

public class MainActivity extends AppCompatActivity {
    private MyListener myListener;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        myListener = new MyListener(MainActivity.this);
    }

    @Override
    protected void onStart() {
        super.onStart();
        myListener.start();
    }

    @Override
    protected void onStop() {
        super.onStop();
        myListener.stop();
    }
}


class MyListener {
    public MyListener(Context context) {
    ...
    }
    void start() {
    ...
    }
    void stop() {
    ...
    }
}

虽然,代码看起来没什么问题,但在实际开发中可能会有多个组件在Activity的生命周期中进行回调,这样Activity的生命周期的方法中可能就需要编写大量的代码,这就使得它们难以维护。
我们希望在对组件进行管理不依赖页面的生命周期的回调方法,同时当页面生命周期发生改变时,也能够即时的收到通知。这在Android组件化和架构设计的时候表现的尤为明显。

那纠结什么是Lifecycle组件呢?总的来说,Lifecycle 就是具有生命周期感知能力的组件。简单的理解就是,当Activity/Fragment的生命周期产生变化时,Lifecycle组件会感应相应的生命周期变化,当然我们还可以通过使用Lifecycle组件来在自定义的类中管理Activity/fragment的生命周期。

目前,Lifecycle生命周期组件主要由Lifecycle、LifecycleOwner、LifecycleObserver三个对象构成。

  • Lifecycle:是一个持有组件生命周期状态与事件(如Activity或Fragment)的信息的类。
  • LifecycleOwner:Lifecycle的提供者,通过实现LifecycleOwner接口来访问Lifecycle生命周期对象。Fragment和FragmentActivity类实现了LifecycleOwner接口,它具有访问生命周期的getLifecycle方法,使用时需要在自己的类中实现LifecycleOwner。
  • LifecycleObserver:Lifecycle观察者,可以使用LifecycleOwner类的addObserver()方法进行注册,被注册后LifecycleObserver便可以观察到LifecycleOwner的生命周期事件。

Lifecycle使用

使用Lifecycle进行应用开发之前,需要先在app的build.gradle文件中添加如下依赖代码。

    dependencies {
        def lifecycle_version = "2.2.0"
        def arch_version = "2.1.0"

        // ViewModel
        implementation "androidx.lifecycle:lifecycle-viewmodel:$lifecycle_version"
        // LiveData
        implementation "androidx.lifecycle:lifecycle-livedata:$lifecycle_version"
        // Lifecycles only (without ViewModel or LiveData)
        implementation "androidx.lifecycle:lifecycle-runtime:$lifecycle_version"

        // Saved state module for ViewModel
        implementation "androidx.lifecycle:lifecycle-viewmodel-savedstate:$lifecycle_version"

        // Annotation processor
        annotationProcessor "androidx.lifecycle:lifecycle-compiler:$lifecycle_version"
        // alternately - if using Java8, use the following instead of lifecycle-compiler
        implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"

        // optional - helpers for implementing LifecycleOwner in a Service
        implementation "androidx.lifecycle:lifecycle-service:$lifecycle_version"

        // optional - ProcessLifecycleOwner provides a lifecycle for the whole application process
        implementation "androidx.lifecycle:lifecycle-process:$lifecycle_version"

        // optional - ReactiveStreams support for LiveData
        implementation "androidx.lifecycle:lifecycle-reactivestreams:$lifecycle_version"

        // optional - Test helpers for LiveData
        testImplementation "androidx.arch.core:core-testing:$arch_version"
    }
    

官网用的是AndroidX,因为使用AndroidX可能会产生一些迁移的问题,这里的例子就不使用AndroidX,使用lifecycleandroid.arch.lifecycle库即可,如下所示。

dependencies {
    implementation fileTree(dir: "libs", include: ["*.jar"])
    implementation 'androidx.appcompat:appcompat:1.2.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.2'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'androidx.test.ext:junit:1.1.2'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

    def lifecycle_version = "2.2.0"

    // 包含ViewModel和LiveData
    implementation "android.arch.lifecycle:extensions:$lifecycle_version"
    // 仅仅包含ViewModel
    implementation "android.arch.lifecycle:viewmodel:$lifecycle_version" // For Kotlin use viewmodel-ktx
    // 仅仅包含LiveData
    implementation "android.arch.lifecycle:livedata:$lifecycle_version"
    // 仅仅包含Lifecycles
    implementation "android.arch.lifecycle:runtime:$lifecycle_version"
    //noinspection LifecycleAnnotationProcessorWithJava8
    annotationProcessor "android.arch.lifecycle:compiler:$lifecycle_version" // For Kotlin use kapt instead of annotationProcessor
    // 如果用Java8, 用于替代compiler
    implementation "android.arch.lifecycle:common-java8:$lifecycle_version"
    // 可选,ReactiveStreams对LiveData的支持
    implementation "android.arch.lifecycle:reactivestreams:$lifecycle_version"
    // 可选,LiveData的测试
    testImplementation "android.arch.core:core-testing:$lifecycle_version"

}

按照Lifecycle的使用流程,需要先定义观察者,并重写对应的生命周期,代码如下。

public class MyObserver implements LifecycleObserver {

        @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
        void onResume(){
            Log.d(TAG, "Lifecycle call onResume");
        }
        @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
        void onPause(){
            Log.d(TAG, "Lifecycle call onPause");
        }
    }

然后,我们在onCreate()方法中添加观察者,代码如下。

 getLifecycle().addObserver(new MyObserver());

完整的代码如下所示。

public class MainActivity extends AppCompatActivity {

    private static final String TAG = "MainActivity";

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        getLifecycle().addObserver(new MyObserver());
    }

    @Override
    protected void onResume() {
        super.onResume();
        Log.d(TAG, "onResume");
    }

    @Override
    protected void onPause() {
        super.onPause();
        Log.d(TAG, "onPause");
    }

    //自定义观察者
    public class MyObserver implements LifecycleObserver {

        @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
        void onResume(){
            Log.d(TAG, "Lifecycle call onResume");
        }
        @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
        void onPause(){
            Log.d(TAG, "Lifecycle call onPause");
        }
    }
}

经过上面的处理后,MyObserver就可以观察MainActivity的生命周期变化了。在上面的示例中,LifecycleOwner可以理解为被观察者,MainActivity默认实现了LifecycleOwner接口,也就是说MainActivity是被观察者。运行上面的代码,得到如下的日志。

com.xzh.androidx D/MainActivity: MainActivity onResume
com.xzh.androidx D/MainActivity: Lifecycle call onResume
com.xzh.androidx D/MainActivity: Lifecycle call onPause
com.xzh.androidx D/MainActivity: MainActivity onPause

当然,在被观察者中进行注册时,我们还可以对代码进行拆解,写成下面的方式。

public class MainActivity extends AppCompatActivity {

    private static final String TAG = "MainActivity";
    private LifecycleRegistry registry;
    private MyObserver myObserver = new MyObserver();

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        init();
    }

    @Override
    protected void onResume() {
        super.onResume();
        registry.setCurrentState(Lifecycle.State.RESUMED);
    }

    @NonNull
    @Override
    public Lifecycle getLifecycle() {
        return  registry;
    }

    private void init() {
        registry = new LifecycleRegistry(this);
        registry.addObserver(myObserver);
    }

   ... //省略MyObserver代码

}

在自定义的Activity或Fragment中实现LifeCycleOwner时,可以实现LifecycleRegistryOwner接口,如下所示。

public class MyFragment extends Fragment implements LifecycleRegistryOwner {
    LifecycleRegistry lifecycleRegistry = new LifecycleRegistry(this);

    @Override
    public LifecycleRegistry getLifecycle() {
        return lifecycleRegistry;
    }
}

通过示例的分析可以发现,Android的Lifecycle组件需要先创建一个观察者,当组件生命周期发生变化时,通知观察者LifeCycle注解的方法做出响应。

Lifecycle源码分析

Lifecycle注册流程

Lifecycle使用两个枚举来跟踪其关联组件的生命周期状态,这两个枚举分别是Event和State。

  • State:Lifecycle的生命周期所处的状态。
  • Event:Lifecycle生命周期对应的事件,这些事件会映射到Activity和Fragment中的回调事件中。

打开lifecycle:common库下的Lifecycle类,

public abstract class Lifecycle {

    @RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
    @NonNull
    AtomicReference<Object> mInternalScopeRef = new AtomicReference<>();

    @MainThread
    public abstract void addObserver(@NonNull LifecycleObserver observer);

  
    @MainThread
    public abstract void removeObserver(@NonNull LifecycleObserver observer);

   
    @MainThread
    @NonNull
    public abstract State getCurrentState();

    @SuppressWarnings("WeakerAccess")
    public enum Event {
        ON_CREATE,
        ON_START,
        ON_RESUME,
        ON_PAUSE,
        ON_STOP,
        ON_DESTROY,
        ON_ANY
    }

   
    @SuppressWarnings("WeakerAccess")
    public enum State {
        DESTROYED,
        INITIALIZED,
        CREATED,
        STARTED,
        RESUMED;
        
        public boolean isAtLeast(@NonNull State state) {
            return compareTo(state) >= 0;
        }
    }
}

可以发现,Lifecycle是一个抽象类,其内部不仅包括了添加和移除观察者的方法,还包括了Event和State两个枚举。并且,Event中的事件和Activity的生命周期几乎是对应的,除了ON_ANY,它可用于匹配所有事件。State与Event的生命周期关系的时序图如下图所示。

Android Jetpack架构组件之Lifecycle_第1张图片

在Lifecycle抽象类中,enum枚举定义了所有State,各个状态都是按照固定的顺序来变化的,所以State具备了生命周期的概念。Lifecycle是抽象类,唯一的具体实现类为 LifecycleRegistry,源码如下。

public class LifecycleRegistry extends Lifecycle {
    /**
     * 一个列表,并且可以在遍历期间添加或者删除元素
     * 新观察者的状态一定是小于等于之前的观察者的
     */
    private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap =
            new FastSafeIterableMap<>();
    /**
     * 当前状态
     */
    private State mState;
    /**
     * 以弱引用保存LifecycleOwner,防止内存泄漏
     */
    private final WeakReference<LifecycleOwner> mLifecycleOwner;
}

LifecycleRegistry将事件通知给所有观察者之前,存在一个同步的过程。这个同步的过程中,前面的观察者已经通知到了,后面的观察者还没被通知,于是所有观察者之间的状态就不一致了,各观察者状态之间便产生了差异,只有第一个观察者的状态等于最后一个观察者的状态,并且等于LifecycleRegistry中的当前状态mState,才说明状态同步整个完成了。

加下来,我们来看一下Lifecycle的注册流程,addObserver() 方法是注册观察者的入口,源码如下。

    @Override
    public void addObserver(@NonNull LifecycleObserver observer) {
        State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
        ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
        ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
        if (previous != null) {
            return;
        }
        LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
        if (lifecycleOwner == null) {
            return;
        }

        boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
        State targetState = calculateTargetState(observer);
        mAddingObserverCounter++;
      
        while ((statefulObserver.mState.compareTo(targetState) < 0
                && mObserverMap.contains(observer))) {
            pushParentState(statefulObserver.mState);
            statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
            popParentState();
            // 重新计算状态,用于循环退出条件:直到observer的状态从INITIALIZED的状态递进到当前LifecyleOwner的状态
            targetState = calculateTargetState(observer);
        }
       
        if (!isReentrance) {
            sync();
        }
        mAddingObserverCounter--;
    }

在上面的源码中,代码的来前几行是将 state与observer 包装成ObserverWithState类型,state 的初始值为 INITIALIZED ,然后存入集合,如果observer之前已经存在的话,就认定重复添加,直接返回。当添加的observer为新的时候,执行循环流程。接着判断了一下isReentrance的值,表示是否重入,即是否需要同时执行添加addObserver()的流程或者同时有其他Event事件正在分发。然后,在while循环中,执行事件的分发逻辑。while循环中有两个比较重要的方法:dispatchEvent()upEvent()

首先,我们来看一下dispatchEvent()方法的源码,如下所示。

static class ObserverWithState {
        State mState;
        LifecycleEventObserver mLifecycleObserver;

        ObserverWithState(LifecycleObserver observer, State initialState) {
            mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
            mState = initialState;
        }

        void dispatchEvent(LifecycleOwner owner, Event event) {
            State newState = getStateAfter(event);
            mState = min(mState, newState);
                // observer的回调函数
            mLifecycleObserver.onStateChanged(owner, event);
            mState = newState;
        }
    }

然后再调用了 observer的回调方法onStateChanged()更新组件的状态mState。

通知观察者

前面我们分析了Lifecycle的注册观察者的流程,接下来我们看一下Lifecycle又是如何通知Activity或Fragment的生命周期改变的呢?在Android 8.0时,FragmentActivity继承自SupportActivity,而在Android 9.0,FragmentActivity继承自ComponentActivity 。SupportActivity和ComponentActivity的代码区别不大,以ComponentActivity来说,源码如下。

public class ComponentActivity extends androidx.core.app.ComponentActivity implements
        LifecycleOwner,
        ViewModelStoreOwner,
    
        ...   //省略其他代码

    private final LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
    

    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        ...   //省略其他代码
       
        ReportFragment.injectIfNeededIn(this);
        if (mContentLayoutId != 0) {
            setContentView(mContentLayoutId);
        }
    }
     ...  //省略其他代码
}
     

接下来,我们看一下ReportFragment的源码。

public class ReportFragment extends Fragment {
    
    public static void injectIfNeededIn(Activity activity) {
        android.app.FragmentManager manager = activity.getFragmentManager();
        if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
            manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
            manager.executePendingTransactions();
        }
    }

    ...

    @Override
    public void onActivityCreated(Bundle savedInstanceState) {
        dispatch(Lifecycle.Event.ON_CREATE);
    }

    @Override
    public void onStart() {
        dispatch(Lifecycle.Event.ON_START);
    }

   ... //省略其他代码

    private void dispatch(Lifecycle.Event event) {
        Activity activity = getActivity();
        if (activity instanceof LifecycleRegistryOwner) {
            ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
            return;
        }

        if (activity instanceof LifecycleOwner) {
            Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
            if (lifecycle instanceof LifecycleRegistry) {
                ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
            }
        }
    }
    

在上面的ReportFragment类中,Activity 通过注入一个没有UI的 ReportFragment ,然后在 ReportFragment的的生命周期回调中调用dispathch() 方法分发生命周期状态的改变。因为Fragment依赖于创建它的Activity,所以Fragment的生命周期和Activity生命周期同步,这样就间接实现了 Lifecycle 监听Activity生命周期的功能。接下来,看一下是dispatch()方法是如何分发Event的,源码如下。

private void dispatch(Lifecycle.Event event) {
        Activity activity = getActivity();
        if (activity instanceof LifecycleRegistryOwner) {
            ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
            return;
        }

        if (activity instanceof LifecycleOwner) {
            Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
            if (lifecycle instanceof LifecycleRegistry) {
                ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
            }
        }
    }

可以发现,在调用getActivity()方法后向上转型强制转换为LifecycleOwner,然后调用了LifecycleRegistry类的handleLifecycleEvent()方法,然后逻辑又回到了LifecycleRegistry类中,进而将事件Event分发交由LifecycleRegistry进行处理。其中,handleLifecycleEvent(event)的实现如下所示。

public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
        State next = getStateAfter(event);
        moveToState(next);
    }
    
private void moveToState(State next) {
       
        // 将 mState 更新为当前的 State
        mState = next;
            ...
        mHandlingEvent = true;
        sync();
        mHandlingEvent = false;
    }

更新了mState的值之后,就调用sync()方法,sync()方法就是根据 mState 的改变做出同步操作,并执行分发事件,sync()方法的源码如下。

private void sync() {
      LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
      
      // 判断是否需要同步,没有同步则一直进行
      while (!isSynced()) {
          mNewEventOccurred = false;
          if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
             //同步并分发事件
              backwardPass(lifecycleOwner);
          }
          Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
          if (!mNewEventOccurred && newest != null
                  && mState.compareTo(newest.getValue().mState) > 0) {                
                  //同步并分发事件
              forwardPass(lifecycleOwner);
          }
      }
      mNewEventOccurred = false;
  }

private boolean isSynced() {
        if (mObserverMap.size() == 0) {
            return true;
        }
        State eldestObserverState = mObserverMap.eldest().getValue().mState;
        State newestObserverState = mObserverMap.newest().getValue().mState;
        return eldestObserverState == newestObserverState && mState == newestObserverState;
    }

首先,通过调用isSynced() 方法来判断是否需要同步。isSynced()方法比较简单,主要通过比较第一个observer和最后一个observer,他们的 mState 值是否相等,相等的话则说明同步完毕,不相等的话继续同步,直到相等为止。

同时,sync()方法中会根据当前状态和mObserverMap中的eldest和newest的状态做对比 ,判断当前状态是向前还是向后,以向后为例。

private void forwardPass(LifecycleOwner lifecycleOwner) {
    Iterator<LifecycleObserver, ObserverWithState>> ascendingIterator =
            mObserverMap.iteratorWithAdditions();
    while (ascendingIterator.hasNext() && !mNewEventOccurred) {
        Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
        ObserverWithState observer = entry.getValue();//1
        while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
                && mObserverMap.contains(entry.getKey()))) {
            pushParentState(observer.mState);
            observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));//2
            popParentState();
        }
    }
}

forwardPass()方法最核心的就是获取ObserverWithState状态,ObserverWithState的代码如下。

static class ObserverWithState {
    State mState;
    GenericLifecycleObserver mLifecycleObserver;

    ObserverWithState(LifecycleObserver observer, State initialState) {
        mLifecycleObserver = Lifecycling.getCallback(observer);//1
        mState = initialState;
    }

    void dispatchEvent(LifecycleOwner owner, Event event) {
        State newState = getStateAfter(event);
        mState = min(mState, newState);
        mLifecycleObserver.onStateChanged(owner, event);
        mState = newState;
    }
}

ObserverWithState类包括了State和GenericLifecycleObserver成员变量,GenericLifecycleObserver是一个接口,它继承了LifecycleObserver接口。
ReflectiveGenericLifecycleObserver和CompositeGeneratedAdaptersObserver是GenericLifecycleObserver的实现类,这里主要查看ReflectiveGenericLifecycleObserver的onStateChanged方法是如何实现的,源码如下。

class ReflectiveGenericLifecycleObserver implements GenericLifecycleObserver {
    private final Object mWrapped;
    private final CallbackInfo mInfo;

    ReflectiveGenericLifecycleObserver(Object wrapped) {
        mWrapped = wrapped;
        mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass());
    }

    @Override
    public void onStateChanged(LifecycleOwner source, Event event) {
        mInfo.invokeCallbacks(source, event, mWrapped);//1
    }
}

onStateChanged()方法会调用CallbackInfo的invokeCallbacks()方法,这里会用到CallbackInfo类,代码如下。

static class CallbackInfo {
        final Map<Lifecycle.Event, List>> mEventToHandlers;
        final Map<MethodReference, Lifecycle.Event> mHandlerToEvent;
        CallbackInfo(Map<MethodReference, Lifecycle.Event> handlerToEvent) {
            mHandlerToEvent = handlerToEvent;
            mEventToHandlers = new HashMap<>();
            for (Map.Entry<MethodReference, Lifecycle.Event> entry : handlerToEvent.entrySet()) {//1
                Lifecycle.Event event = entry.getValue();
                List<MethodReference> methodReferences = mEventToHandlers.get(event);
                if (methodReferences == null) {
                    methodReferences = new ArrayList<>();
                    mEventToHandlers.put(event, methodReferences);
                }
                methodReferences.add(entry.getKey());
            }
        }
        @SuppressWarnings("ConstantConditions")
        void invokeCallbacks(LifecycleOwner source, Lifecycle.Event event, Object target) {
            invokeMethodsForEvent(mEventToHandlers.get(event), source, event, target);//2
            invokeMethodsForEvent(mEventToHandlers.get(Lifecycle.Event.ON_ANY), source, event,
                    target);
        }

        private static void invokeMethodsForEvent(List<MethodReference> handlers,
                LifecycleOwner source, Lifecycle.Event event, Object mWrapped) {
            if (handlers != null) {
                for (int i = handlers.size() - 1; i >= 0; i--) {
                    handlers.get(i).invokeCallback(source, event, mWrapped);//1
                }
            }
        }

在CallbackInfo代码中,首先使用循环将handlerToEvent进行数据类型转换,转化为一个HashMap,key的值为事件,value的值为MethodReference。而invokeMethodsForEvent()方法会传入mEventToHandlers.get(event),也就是事件对应的MethodReference的集合。然后,invokeMethodsForEvent方法中会遍历MethodReference的集合,调用MethodReference的invokeCallback方法。其中,MethodReference类的代码如下。

@SuppressWarnings("WeakerAccess")
   static class MethodReference {
       final int mCallType;
       final Method mMethod;
       MethodReference(int callType, Method method) {
           mCallType = callType;
           mMethod = method;
           mMethod.setAccessible(true);
       }
       void invokeCallback(LifecycleOwner source, Lifecycle.Event event, Object target) {
           try {
               switch (mCallType) {
                   case CALL_TYPE_NO_ARG:
                       mMethod.invoke(target);
                       break;
                   case CALL_TYPE_PROVIDER:
                       mMethod.invoke(target, source);
                       break;
                   case CALL_TYPE_PROVIDER_WITH_EVENT:
                       mMethod.invoke(target, source, event);
                       break;
               }
           } catch (InvocationTargetException e) {
               throw new RuntimeException("Failed to call observer method", e.getCause());
           } catch (IllegalAccessException e) {
               throw new RuntimeException(e);
           }
       }
     ...
   }

MethodReference类中有两个变量,一个是callType,它代表调用方法的类型,另一个是Method,它代表方法,并最终通过invoke对方法进行反射,通过反射对事件的对应方法进行调用。

你可能感兴趣的:(jetpack,android,jetpack)