- 【AI开源项目】Dify- 轻松打造可持续运营的 GPT 系列的 AI应用 —— 全面解析LLMOps平台
ChatGPT-千鑫
AI开源项目人工智能人工智能开源gptgpt-3AI编程codemoss能用AI
文章目录什么是Dify?Dify的名称由来了解LLMOpsDify的核心功能兼容多种LLMsDify的优势完全开源核心能力如何安装Dify快速启动使用HelmChart在Kubernetes上部署自定义配置使用Dify创建AI应用第一步:创建应用程序第二步:编写和调试提示词第三步:集成私有数据或API功能第四步:监控和改进常见问题解答Q1:我能用Dify做什么?Q2:如何使用Dify“训练”自己的
- 利用 OpenAI GPT、LangChain 和 Streamlit 创建自己的 PDF 问答系统
hj_caas
每日外文推荐gptlangchainpdf
每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。欢迎关注公众号原文标题:CreateYourOwnPDFQuestionAnsweringSystemwithOpenAIGPT,LangChain,andStreamlit原文地址:https://medium.com/python-in-plain-english/create-your-
- [玩转Polygon.io Stocks API:实时市场数据一网打尽]
sjufgwgfhoia
python
玩转Polygon.ioStocksAPI:实时市场数据一网打尽引言在新时代的金融市场中,获取实时和历史股票数据对于投资者和开发者来说越来越重要。Polygon.ioStocksAPI提供了一套REST接口,允许你查询所有美国股票交易所的最新市场数据。这篇文章的目标是帮助你利用Polygon.ioStocksAPI从获取最新股票报价到金融数据分析,实现高效的数据获取。主要内容1.获取API密钥首先
- 《算法零基础100讲》(第61讲) 前缀和(五) 二维前缀和
英雄哪里出来
《算法零基础100讲》算法线性代数矩阵前缀和二维前缀和
文章目录一、概念定义1、预处理2、预处理代码实现3、查询4、查询代码实现二、题目描述三、算法详解四、源码剖析五、推荐专栏六、习题练习一、概念定义 有关一维前缀和的概念,在《算法零基础100讲》(第57讲)前缀和(一)线性前缀和入门中已经较为清晰的阐述,今天我们来学习二维的情况。1、预处理 问题的起源就是对一个矩阵,如何在最快的时间内,求出它的某个子矩阵的和。我们首先把问题简化,对于一个n×mn
- 【漫话机器学习系列】079.超参数调优(Hyperparameter Tuning)
IT古董
漫话机器学习系列专辑机器学习深度学习人工智能
超参数调优(HyperparameterTuning)是机器学习中优化模型性能的重要步骤之一。超参数是模型在训练之前设定的参数,而不是通过训练数据学习到的参数。正确地选择超参数可以显著提高模型的预测能力,反之,错误的超参数选择可能会导致过拟合、欠拟合或训练过程缓慢。1.超参数的定义超参数是控制学习过程的外部参数,不同于模型参数(例如权重和偏置),超参数不通过训练过程自动优化。常见的超参数包括:学习
- 自学黑客的11个步骤,零基础入门到精通,收藏这一篇就够了
~小羊没烦恼~
java数据库开发语言人工智能intellij-idea安全web安全
黑客攻防是一个极具魅力的技术领域,但成为一名黑客毫无疑问也并不容易。你必须拥有对新技术的好奇心和积极的学习态度,具备很深的计算机系统、编程语言和操作系统知识,并乐意不断地去学习和进步。如果你想成为一名优秀的黑客,下面是10种最重要的基础条件,请认真阅读:1.了解黑客的思维方式我们生活中用到的网站、软件等,都是由程序员编写的代码构成的。这些代码在设计的过程中,都是基于一种正向的逻辑进行的,为了实现某
- 全场景深度学习开源框架(MindSpore)
deepdata_cn
人工智能深度学习开源人工智能
MindSpore是华为推出的一款全场景深度学习开源框架。旨在实现不同计算平台(如云端、边缘端、端侧)和不同硬件(如CPU、GPU、Ascend等)之间的高效协同。无论是在数据中心的大规模计算,还是在手机、物联网设备等资源受限的终端上,MindSpore都能灵活适配,充分发挥各硬件平台的性能优势,实现模型的高效训练和推理。该框架引入了自动并行技术,能够根据模型结构和硬件资源自动进行并行策略的搜索和
- torch.nn.RNN: PyTorch 中的循环神经网络(RNN)模块
彬彬侠
自然语言处理RNNPyTorchPython循环神经网络NLP自然语言处理
torch.nn.RNN:PyTorch中的循环神经网络(RNN)模块1.概述在PyTorch中,torch.nn.RNN是一个用于构建循环神经网络(RNN)的模块。它提供了一个可以进行训练的RNN层,广泛应用于序列数据的建模,如自然语言处理、时间序列分析等。这个模块可以处理各种类型的序列数据,并支持多种功能和配置。2.主要功能torch.nn.RNN可以:处理序列数据,捕捉时间上的依赖关系。支持
- AI学习指南HuggingFace篇-高级优化技巧
俞兆鹏
AI学习指南ai
一、引言在深度学习和自然语言处理(NLP)中,模型训练的效率和性能至关重要。HuggingFace提供了多种高级优化技巧,帮助开发者提升模型训练的效率和效果。本文将介绍混合精度训练、分布式训练等高级优化技巧,并探讨如何通过这些方法提升模型训练效率。二、混合精度训练(一)混合精度训练的原理混合精度训练利用自动混合精度(AMP)技术,高效管理FP16和FP32之间的转换。通过在前向传播中使用FP16加
- Python实现定时任务
百家晓东
Python
关注公众号“码农帮派”,查看更多系列技术文章:下面提供两种方式实现Python中的定时任务:|time.sleep(seconds)|time,sched方式一:#coding=utf-8importtimedefoperate(inc=1):#dosomethingprint'----'time.sleep(inc)pass#循环执行10次foriinrange(10):operate(1)【说
- DeepSeek- R1 原理介绍
kcarly
大模型知识乱炖杂谈DeepSeekR1原理介绍
DeepSeek-R1是由DeepSeek公司推出的一款基于强化学习(RL)的开源推理模型,其核心原理和特点如下:1.核心技术与架构强化学习驱动:DeepSeek-R1是首个完全通过强化学习训练的大型语言模型,无需依赖监督微调(SFT)或人工标注数据。它采用组相对策略优化(GRPO)算法,通过奖励机制和规则引导模型生成结构化思维链(CoT),从而提升推理能力。多阶段训练流程:模型采用冷启动阶段、强
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- 自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
辞落山
逻辑回归
1.引言在这篇博客中,我们将使用PaddlePaddle框架实现一个逻辑回归模型,利用NumPy自定义数据集进行训练,并保存模型。最后,我们将演示如何加载保存的模型并进行预测。2.环境设置首先,确保已安装PaddlePaddle和NumPy:pipinstallpaddlepaddlenumpy3.数据集准备我们使用NumPy自定义一个简单的二分类数据集:importnumpyasnp#生成简单数
- Databricks 开源 LLM,训练只需三个小时
唐 城
AI-毕业设计全套springlog4jpostgresql数据库java
大数据分析公司DatabricksInc近日也加入了生成式AI领域的竞争之中,发布了一个名为Dolly的开源大型语言模型,将模型命名为Dolly是为了向第一只克隆羊多莉致敬。像ChatGPT和Bard这样的生成式AI,它们使用的数据通常来自于在成千上万不同网站,使用的数据量十分惊人,而且想要使用这些数据训练AI还需要数以千计的强大GPU在背后提供支持。Databricks希望通过开源Dolly及其
- Paddle进阶实战系列(三):基于SVTR算法的手写英文单词识别
GoAI
深入浅出OCR深入浅出AI计算机视觉OCRpaddle深度学习人工智能
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️链接加群。专栏推荐:➡️
- 解决_pickle.UnpicklingError: A load persistent id instruction was encountered,but no persistent_load
邻家的狗2
深度学习人工智能机器学习
报错信息:_pickle.UnpicklingError:Aloadpersistentidinstructionwasencountered,butnopersistent_loadfunctionwasspecified.报错原因:在加载模型参数时,torch版本发生变化,我报错因为训练前torch版本比较高,后面需要较低版本导致两个版本不一致发生报错。解决办法:将训练重新训练一次就欧克了,保
- 【Python无敌】在 QGIS 中使用 Python
唐 城
AI-毕业设计全套唐城江湖风雨-Java唐城奇妙之旅-GISpythonlinux开发语言
QGIS中有Python的运行环境,可以很好地执行各种任务。这里的问题是如何在Jupyter中调用QGIS的功能。首先可以肯定的是涉及到GUI的一些任务是无法在Jupyter中访问的,这样可以用的功能主要是地处理工具。按如下方式进行了尝试。原想使用gdal:hillshade,但是始终无法成功(这个运行失败需要重启内核)。后来参考【清华大学对应镜像】QGIS+Conda+jupyter玩转Pyth
- DeepSeek R1 AI 论文翻译
老马啸西风
java
摘要原文地址:DeepSeekR1AI论文翻译我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(SFT)作为预处理步骤,展现出了显著的推理能力。通过RL,DeepSeek-R1-Zero自然而然地展现了许多强大且引人注目的推理行为。然而,它也遇到了一些挑战
- Yuan 2.0-M32 是一个基于 Yuan 2.0 架构的双语混合专家 (MoE) 语言模型,旨在以更少的参数和计算量实现更高的准确率
东方佑
量子变法架构语言模型人工智能
主要创新点:注意力路由器(AttentionRouter):提出了一种新的路由器网络,考虑了专家之间的相关性,从而提高了模型的准确率。高效计算:使用MoE架构,40B总参数中仅有3.7B激活参数,训练计算消耗仅为同规模密集模型的9.25%,推理成本与3.7B参数的密集模型相当。性能优异:在代码生成、数学解题、科学知识和推理等多个领域展现出与Llama3-70B等大型模型相当甚至更优的性能。模型结构
- 【分割评价指标-nnUNet V2训练】- AutoDL
HUI 别摸鱼了
深度学习PyTorch算法人工智能python
目录一、DSC二、IOU三、VOE(VolumeOverlapError)四、RVD(RelativeVolumeDifference)五、Hausdorff95(95thPercentileofHausdorffDistance)六、ASSD(AverageSymmetricSurfaceDistance)七、MSD(MeanSurfaceDistance)八、NSD(NormalizedSur
- PyTorch 训练一个分类器
亚里
平台工具类pytorch训练网络
文章目录0前言1加载和规范化CIFAR102定义一个卷积网络3定义损失函数和优化器4训练网络5测试网络6在GPU上训练模型参考资料0前言 TRAINGINGACLASSIFIER这篇教程很清楚的描述了如何使用PyTorch训练一个用于图像分类的卷积网络模型。这里记录一下,学习一波写法,供以后查阅,自己跑的项目在github上,稍微修改了一下训练策略,能使分类精度从53%提升到65%;并且增加了训
- Java 关于抽象 -- Java 语言的抽象类、接口和函数式接口
栗筝i
栗筝i的Java技术栈(付费部分)#Java基础-专栏栗筝i的Java技术栈Java基础Java入门Java抽象Java
大家好,我是栗筝i,这篇文章是我的“栗筝i的Java技术栈”专栏的第008篇文章,在“栗筝i的Java技术栈”这个专栏中我会持续为大家更新Java技术相关全套技术栈内容。专栏的主要目标是已经有一定Java开发经验,并希望进一步完善自己对整个Java技术体系来充实自己的技术栈的同学。与此同时,本专栏的所有文章,也都会准备充足的代码示例和完善的知识点梳理,因此也十分适合零基础的小白和要准备工作面试的同
- 蓝桥杯——试题集——入门训练
唐煜鑫
蓝桥杯c语言
入门训练BEGIN-1A+B问题问题描述输入A、B,输出A+B。输入格式输入的第一行包括两个整数,由空格分隔,分别表示A、B。输出格式输出一行,包括一个整数,表示A+B的值。样例输入1245样例输出57数据规模与约定-10000intmain(){inta,b;scanf("%d%d",&a,&b);printf("%d",a+b);return0;}BEGIN-2序列求和问题描述求1+2+3+…
- 蓝桥杯训练1——缩位求和
会编程的小孩
蓝桥杯职场和发展
缩位求和例如123输出为6n=int(input())lst=list(str(n))sum=0foriinlst:sum+=int(i)whilesum>=10:s=0lst1=list(str(sum))foriteminlst1:s+=int(item)sum=sprint(s)
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- Solidity/Rust 实战 —— Web3 开发者免费训练营(第 21 期)
HackQuest第21期Solidity/Rust共学营即将开营!Solidity/Rust共学营信息清单7月23日-8月1日免费(成功结营的小伙伴还将获得专属周边)全程线上(会议具体时间入营后通知)️头部公链官方签发的学习证书主办社区:HackQuestHackQuest是一个充满活力的Web3开发者教育社区,我们的目标是培养下一代Web3开发者。目前,HackQuest组织的共学营已达20期
- Move on Sui 实战 —— Web3 开发者免费训练营「第22期」
程序员区块链
HackQuest第22期MoveonSui共学营即将开营!MoveonSui共学营信息清单7月31日-8月8日免费(成功结营的小伙伴还将获得Sui基金会提供的奖金)全程线上(会议具体时间入营后通知)️头部公链官方签发的学习证书关于HackQuestHackQuest是一个充满活力的Web3开发者教育社区,我们的目标是培养下一代Web3开发者。目前我们的产品仍处于内测阶段,我们计划招募小伙伴们一起
- 关于Sqlite数据库Update语句的一点介绍
maqiutian
sqlite数据库mysql
sqlite数据库不支持update……from语句,但可以用两种不同的方法来替代它,本文主要介绍了这一过程,接下来就让我们一起学习吧。AD:Sqlite数据库中的Update语句,你能了解多少呢?因为这种微型数据库用到的语句非常少,所以可能我们不会经常的用到。但要想真正的玩转sqlite这种微型数据库,掌握这些语句的用法是非常重要的。本文我们就来介绍一下update语句的使用。1.典型的Upda
- 机器学习笔记20241017
tt555555555555
学习笔记深度学习机器学习笔记人工智能
文章目录torchvisiondataloadernn.module卷积非线性激活模型选择训练误差泛化误差正则化权重衰退的基本概念数学表示权重衰退的效果物理解释数值稳定性(GradientVanishing)梯度消失原因解决方法梯度爆炸(GradientExplosion)定义原因解决方法总结继续跟着小土堆学pytorchtorchvision#导入torchvision库,主要用于处理图像数据集
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen