- 学习python的第一天
简讯Alfred
和我一起零基础学Pythonpython编程
作为财经院校的大三学生,面临各种考试,在编程方面完全零基础还想学习Python,担心枯燥的内容难以坚持下来,希望通过更博的方式督促自己学习,有空就更新博客。很多大牛通过更新自己的网站或更新博文的方式传播技能知识,我很是倾佩!第一次用这种方式学习一门知识,对于自己来说既是一种全新的体验,也可以作为学习笔记,日后也有足迹。学习资料暂定为《笨办法学Python》。如果有新手看到此文章,还希望只当参考中的
- Python最难懂的10大知识点,学会就是大牛!
忆愿
Python编程的脉动之声pythonandroid开发语言人工智能机器学习数据结构算法
你好,我是忆愿,全网4w+粉丝,《遂愿盈创》社群主理人。副业启航①|遂愿盈创(对副业感兴趣免费可入,多种赚钱实战项目等你来,一起探寻副业快速变现的途径;以及对接互联网大厂商务合作,一起来搞点小外快,认识更多互联网大咖)目前群里已经带很多小伙伴(大部分大学生)变现几百块啦,程序员搞副业有额外加成~对副业感兴趣可+V:suiyuan2ying拉你进群。文章目录1.装饰器的套路1.1基础装饰器1.2带参
- [使用技巧] Linux创建自定义服务
The Daylight
linux运维服务器
Linux创建自定义服务文章目录Linux创建自定义服务1需求分析2systemctl介绍2.1服务基本操作2.2编写service文件3使用案例-部署python脚本服务1需求分析在实际学习/开发过程中,通常需要让某些服务做到自启,又或是停止服务,开启服务这样的操作,一种常见的作法是编写一个启动脚本,然后将该脚本放入开机自启当中。具体的来说,就是把自动启动脚本写入/etc/rc.local当中。
- YOLOv9改进,YOLOv9检测头融合,适合目标检测、分割任务
挂科边缘
YOLOv9改进目标检测人工智能计算机视觉YOLO
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- 【STM32-学习笔记-11-】RTC实时时钟
隼玉
【STM32学习笔记】stm32学习笔记c语言
文章目录RTC实时时钟一、RTC简介二、RTC框图三、RTC基本结构四、RTC操作注意事项五、RTC函数六、配置RTCMyRTC.c七、示例:实时时钟①、main.c②、MyRTC.c③、MyRTC.hRTC实时时钟一、RTC简介RTC(RealTimeClock)实时时钟RTC是一个独立的定时器,可为系统提供时钟和日历的功能RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~
- Python实用小工具(3)——实现PDF合并和拆分功能(附源码+exe文件)
MatpyMaster
实用小工具pdf测试工具
在日常工作和学习中,我们常常会遇到需要处理PDF文件的情况,例如合并多个PDF文档,拆分成单页或指定页数的PDF等。为了更方便地处理这些任务,今天我们将利用Python和Tkinter库,创建一个简易的PDF工具。这个工具包括PDF合并和PDF拆分两个功能,操作简单,界面友好。功能介绍①PDF合并工具新增一个PDF:点击该按钮可进行PDF的选择,需要注意的是依次选择的顺序就是进行合并的顺序,选择结
- 使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
fc&&fl
大模型实战应用人工智能语言模型自然语言处理
1.简介论文简介:论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通过迭代地综合和优化回答,MoA可以充分利用不同LLM的独特优势。实验发现,即使其他模型提供的辅助回答质量较低
- 基于YOLOv5、YOLOv8和YOLOv10的自助售货机商品检测:深度学习实践与应用
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言自助售货机已经成为现代零售和自动化销售领域的重要组成部分。在自助售货机中,商品的检测与管理至关重要。通过精准的商品检测技术,售货机可以在商品售出后自动更新库存,并提供准确的商品信息反馈。然而,在复杂的环境下进行商品检测是一个具有挑战性的问题,尤其是在商品种类繁多、摆放方式多样以及光照条件变化较大的情况下。近年来,基于深度学习的目标检测算法,特别是YOLO(YouOnlyLookOnce)系列模
- 【分类】【损失函数】处理类别不平衡:CEFL 和 CEFL2 损失函数的实现与应用
丶2136
AI分类人工智能损失函数
引言在深度学习中的分类问题中,类别不平衡问题是常见的挑战之一。尤其在面部表情分类任务中,不同表情类别的样本数量可能差异较大,比如“开心”表情的样本远远多于“生气”表情。面对这种情况,普通的交叉熵损失函数容易导致模型过拟合到大类样本,忽略少数类样本。为了有效解决类别不平衡问题,Class-balancedExponentialFocalLoss(CEFL)和Class-balancedExponen
- 【新人系列】Python 入门(十六):正则表达式
Pandaconda
#Python新人系列python正则表达式开发语言后端笔记面试
✍个人博客:https://blog.csdn.net/Newin2020?type=blog专栏地址:https://blog.csdn.net/newin2020/category_12801353.html专栏定位:为0基础刚入门Python的小伙伴提供详细的讲解,也欢迎大佬们一起交流~专栏简介:在这个专栏,我将带着大家从0开始入门Python的学习。在这个Python的新人系列专栏下,将会
- 【新人系列】Python 入门(十七):类与对象
Pandaconda
#Python新人系列python开发语言后端笔记面试面向对象类
✍个人博客:https://blog.csdn.net/Newin2020?type=blog专栏地址:https://blog.csdn.net/newin2020/category_12801353.html专栏定位:为0基础刚入门Python的小伙伴提供详细的讲解,也欢迎大佬们一起交流~专栏简介:在这个专栏,我将带着大家从0开始入门Python的学习。在这个Python的新人系列专栏下,将会
- 【新人系列】Python 入门(十一):控制结构
Pandaconda
#Python新人系列python开发语言后端笔记面试控制结构经验分享
✍个人博客:https://blog.csdn.net/Newin2020?type=blog专栏地址:https://blog.csdn.net/newin2020/category_12801353.html专栏定位:为0基础刚入门Python的小伙伴提供详细的讲解,也欢迎大佬们一起交流~专栏简介:在这个专栏,我将带着大家从0开始入门Python的学习。在这个Python的新人系列专栏下,将会
- 免费PDF处理工具大揭秘:合并、分割、压缩一键搞定
IT技术视界
#PC实用工具#IT技术视界pdf软件工具
PDF是一种广泛使用的文件格式,然而,PDF文件的处理并不是那么容易,很多时候,我们需要对PDF文件进行「合并、分割、压缩、转换、编辑」等操作,但是,我们不想「付费」购买软件。那么,有没有一些「免费的客户端工具」,可以帮助我们快速地处理PDF文件呢?答案是有的,今天,我就为您介绍三款实用的PDF客户端工具「软件获取方式在文章的最后」PDF24工具箱:免费且功能丰富PDF24工具箱客户端是一个提供了
- 【LeetCode 刷题】字符串-反转字符串
Bran_Liu
LeetCodeleetcode算法
此博客为《代码随想录》字符串章节的学习笔记,主要内容为反转字符串相关的题目解析。文章目录344.反转字符串541.反转字符串II151.反转字符串中的单词344.反转字符串题目链接classSolution:defreverseString(self,s:List[str])->None:"""Donotreturnanything,modifysin-placeinstead."""left,r
- 人生建议往死里学网络安全!零基础也能跨行学习!!漏洞挖掘还能做副业
黑客老哥
web安全学习安全网络黑客
一、网络安全的重要性:从‘不学会被黑’到‘学会保护别人’网络安全的概念现在不再是技术圈的独立话题,它已经渗透到社会的各个领域。从个人的隐私保护、企业的数据安全,到国家的信息防护,网络安全几乎影响了每一个人的生活。无论是黑客攻击、勒索病毒、数据泄露,还是国家间的信息战,网络安全已经成为现代社会的基础设施之一。所以,首先要明白学习网络安全的重要性:你不仅是在学习技术,更多的是在为自己和他人的安全“筑城
- SOA、SOAP、RPC
2401_84048621
程序员rpc网络协议网络
为什么RPC也不够好?从逻辑角度来看,为什么会更加青睐REST而不是RPC(RemoteProcedureCall,远程过程调用),因为它极大的降低了我们沟通的复杂度,通过把表征作为唯一的沟通的方式。无需去讨论过程(添加一头牛?增加一种动物类型?给鸡的数量翻倍还是卖掉所有猪?)我们只需讨论表征,并且使用这个表征来达到我们想要的目标,很简单,不是吗?我不希望和Marcus的沟通失败,因为我们彼此的理
- Python单元测试之道:从入门到精通的全面指南合集
雅雅酱o
log4jpython开发语言编程计算机单元测试
深入探讨Python单元测试的各个方面,包括基本概念、基础知识、实践方法、高级话题,如何在实际项目中进行单元测试,单元测试的最佳实践,以及一些有用的工具和资源。python学习资料、教程分享:一、单元测试重要性测试是软件开发中不可或缺的一部分,它能够帮助我们保证代码的质量,减少bug,提高系统的稳定性。在各种测试方法中,单元测试由于其快速、有效的特性,特别受到开发者们的喜欢。本文将全面介绍Pyth
- 【新人系列】Python 入门(二十七):Python 库
Pandaconda
#Python新人系列python开发语言后端笔记面试python库库
✍个人博客:https://blog.csdn.net/Newin2020?type=blog专栏地址:https://blog.csdn.net/newin2020/category_12801353.html专栏定位:为0基础刚入门Python的小伙伴提供详细的讲解,也欢迎大佬们一起交流~专栏简介:在这个专栏,我将带着大家从0开始入门Python的学习。在这个Python的新人系列专栏下,将会
- 从计划到执行:销售团队协同的最佳实践
产品经理
在销售管理中,团队协同效率一直是困扰管理者的核心问题。随着数字化工具的普及,越来越多的销售团队开始借助协同平台来提升内部效率。然而,在实际运用中,许多企业发现仅仅依赖工具并不能完全解决问题,关键还在于对流程的优化和资源的整合。销售流程中的三大痛点1.信息孤岛销售团队经常面临数据分散、信息割裂的问题。客户信息、销售计划、跟进记录分别存储在不同平台,导致查找费时费力。2.沟通效率低下跨部门沟通和内部信
- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 全新4.2版本多功能社交兴趣爱好圈子系统涵盖APP、小程序和H5三个端口 ,圈子系统小程序成品源码
前端后端小程序数据库
圈子系统通常指的是社交平台或论坛中的一种功能模块,用于创建和管理兴趣小组或讨论群组。这种系统的源码会涉及到后端数据库设计、用户认证授权、消息传递、群组管理等多个模块。适用于多种场景语音匹配:(主要是匹配当前在线的异性,会主动发送弹窗,对方同意后,进入1v1双方语聊,默认6分钟,如果双方点喜欢按钮,可延长到30分钟。时间到了后,双方私聊即可)每次话费虚拟币。灵魂匹配:是根据采集的用户更多数据和心理测
- 20230329----重返学习-正则的匹配-同步任务与异步任务
方朝端
重返学习学习正则表达式javascript
day-038-thirty-eight-20230329-正则的匹配-同步任务与异步任务正则的匹配字符串正则方法与正则一起使用的字符串方法match捕获letstr="helloAppleoneapple";letreg=/apple/ig;console.log(str.match(reg));replce替换letstr="helloappleoneApple";//默认没有正则,只会替换第
- 松散比较(PHP)(小迪网络安全笔记~
1999er
网络安全学习笔记phpweb安全笔记网络安全安全
免责声明:本文章仅用于交流学习,因文章内容而产生的任何违法&未授权行为,与文章作者无关!!!附:完整笔记目录~ps:本人小白,笔记均在个人理解基础上整理,若有错误欢迎指正!1.3松散比较(PHP)引子:本章主要介绍一些由PHP自身语言特性可能产生的脆弱性,该内容往往被应用于PHPCTF入门题中,但在PHPWeb开发时也可能被使用。====是php中的比较运算符,用于判断==左右两边的值是否相等。若
- torch.utils.data.Dataset()和torch.utils.data.DataLoader()
我叫罗泽南
深度学习python
torch.utils.data.Dataset()和torch.utils.data.DataLoader()是Pytorch中处理数据集和批量加载数据的重要工具。下面将详细介绍它们的作用、用法,并通过一个简单的例子来演示如何使用它们。torch.utils.data.Dataset()Dataset是Pytorch数据加载的基类,用于表示一个数据集。用户可以继承Dataset类并实现其两个方法
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- 使用Llama 3.2-Vision多模态LLM与您的图像聊天
AI程序猿人
llamatransformerpytorch深度学习大模型应用人工智能大模型
介绍将视觉能力与大型语言模型(LLMs)结合的多模态LLM(MLLM)正在通过多模态LLM革命性地改变计算机视觉领域。这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的出色能力。虽然这些模型以前只能通过API访问,但最近的开源选项现在允许本地执行,使其在生产环境中更具吸引力。在此教程中,我们将学习如何使用开源的Llama3.2-Vision模型与图像进行聊天,你会对其OCR、图像理解和推理
- Kotlin学习之 ---- ? ?: !! 操作符的使用(Kotlin花式空判断)
mldxs
kotlinkotlin学习开发语言
目录先抛出个结论:??:的使用方法??:结论:!!的使用方法!!总结:先抛出个结论:?问号修饰,两种使用方式?放在类名后面修饰表示对象可空;?放在对象后修饰,则代表如果对象为空,则不执行后面的代码?:问号冒号修饰符?:放在对象后面,代表如果对象为空,执行?:后面的代码!!叹号修饰符!!放在对象后面,表示即使对象为空我也要往下执行,可能会抛出空指针异常//用于测试的对象返回器classObjectR
- 谷歌吹响反击号角:2025年Gemini用户目标5亿,AI大战一触即发!
that's boy
人工智能chatgptopenaiAI工具AI编程googlegemini
人工智能领域的竞争日趋白热化,谷歌CEO桑达·皮采亲自下场,为GeminiAI定下了雄心勃勃的目标:到2025年底,用户突破5亿!面对ChatGPT的强势崛起,谷歌能否成功逆袭?本文将深入剖析谷歌的战略布局、Gemini的技术优势以及未来AI竞争的格局。谷歌的反击:5亿用户的雄心壮志在过去几年,OpenAI凭借ChatGPT的强大实力,几乎垄断了AI领域的聚光灯。谷歌虽然在AI技术研究方面一直处于
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,