决策树(decision tree)

决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。
本文是本人的学习笔记,所以有些地方也不是很清楚。
大概流程就是
1. 查看子类是否属于同一个类
2. 如果是,返回类标签,如果不是,找到最佳的分类子集的特征
3. 划分数据集
4. 创建分支节点
5. 对每一个节点重复上述步骤
6. 返回树

首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:
1.Gini不纯度
2.信息熵
3.错误率
参考http://blog.csdn.net/baimafujinji/article/details/51724371

本文采用的是信息熵。
H = -∑p(xi)*log(p(xi))

#计算信息熵 
def ShannEnt(dataSet):
    m = len(dataSet);
    data = {}
    shannEnt = 0.0
    for i in range(m):
        dataKey = dataSet[i][-1]
        if dataKey not in data.keys():
            data[dataKey] = 0
        data[dataKey] += 1        
    for j in data:
        pi = float(data[j])/m
        shannEnt -= pi*np.log2(pi)
    return shannEnt

然后就是选择最佳的划分方式,就是按最佳的方式来分的话,得到的信息增益(就是新的信息熵减去老的信息熵)最多(按加权算法来计算的)。

def chooseDateSplit(dataSet):
    numFeature = len(dataSet[0]) - 1
    bestFeature = -1
    #计算上一个的信息熵
    BestEnt = ShannEnt(dataSet)
    bestGain = 0
    for i in range(numFeature):             
        featureList = [ex[i] for ex in dataSet]
        unquialFeature = set(featureList)
        Ent = 0.0
        for j in unquialFeature:
            returnVect = splitData(dataSet, i, j)
            prop = len(returnVect)/float(len(dataSet))
            Ent += prop*ShannEnt(returnVect)
        #计算信息增益
        infoGain = BestEnt - Ent
        if infoGain > bestGain:
            bestGain = infoGain
            bestFeature = i
        return bestFeature;

然后就是构建树了

def createTree(dataSet,label):
    dataList = [ex[-1] for ex in dataSet]
    if dataList.count(dataList[0]) == len(dataList):
        return dataList[0]
    if len(dataList[0]) == 1:
        return majorCnt(dataList)

    bestFeat = chooseDateSplit(dataSet)

    labelFeat = label[bestFeat]
    myTree = {labelFeat:{}}
    del(label[bestFeat])

    feature = [ex[bestFeat] for ex in dataSet]

    uniqicalFeat = set(feature)

    for value in uniqicalFeat:
        subLabel = label[:]
        print()
        print(myTree[labelFeat])
        myTree[labelFeat][value] = createTree(splitData(dataSet, bestFeat, value),subLabel)

    return myTree

最后得到的tree为{‘no sufacing’: {0: ‘no’, 1: {‘flippers’: {0: ‘no’, 1: ‘yes’}}}},得到树后,可以用matploytlib模块来可视化。
决策树(decision tree)_第1张图片
总结:建立一个决策树的话,最重要还是找到怎么去划分子节点,找到最佳的划分特征。

用sklearn的tree来做(还在学习,有问题请马上指出),

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn import tree
from sklearn.externals.six import StringIO
#默认采用的是gini函数,best分类
clf = tree.DecisionTreeClassifier(random_state=0)
iris = load_iris()
pp = cross_val_score(clf, iris.data, iris.target, cv=5)

x = [[1,1],[1,0],[0,1],[0,1],[1,0]]
y = ['no surfing','flippers','fish']
clf = clf.fit(x,[1,1,0,0,0])
import os

import pydot
dot_data = StringIO()
tree.export_graphviz(clf,out_file=dot_data,feature_names=y,  
                         class_names=['no','yes'],  
                         filled=True, rounded=True,  
                         special_characters=True)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_pdf('0101.pdf')

得到0101.pdf
决策树(decision tree)_第2张图片

你可能感兴趣的:(机器学习,数据)