- DeepSeek R1+硅基流动,解决DeepSeek卡顿无法加载问题
落幕7
人工智能AI写作AI编程DeepSeek硅基流动
DeepSeeK调用卡顿加载不出,可以试试硅基流动平台调用DeepSeekR1模型硅基流动网页链接:https://cloud.siliconflow.cn/models可以白嫖14元2000W的token(双方各得2000W的token)邀请码:1pAfWLRa
- 在VSCode中遇到Vetur插件与其他插件冲突时,
安琪CiCi
网络协议
1.检查冲突插件-常见冲突场景:-Vetur与VueLanguageFeatures(Volar):两者功能重叠,建议禁用Vetur,改用官方推荐的Volar。-格式化工具冲突(如Prettier、ESLint):多个格式化插件可能导致代码保存时行为异常。-操作步骤:1.打开VSCode扩展面板(Ctrl+Shift+X)。2.搜索已安装的插件,尝试禁用可疑插件(如Volar或其他Vue相关插件)
- AF3 _correct_post_merged_feats函数解读
qq_27390023
深度学习人工智能生物信息学python
AlphaFold3msa_pairing模块的_correct_post_merged_feats函数用于对合并后的特征进行修正,确保它们符合预期的格式和要求。这包括可能的对特征值进行调整或进一步的格式化,确保合并后的FeatureDict适合于后续模型的输入。主要作用是:在多链蛋白质MSA(多序列比对)合并后,重新计算/调整某些特征:seq_length(序列长度)num_alignments
- AF3 _merge_features_from_multiple_chains函数解读
qq_27390023
人工智能生物信息学深度学习python
AlphaFold3msa_pairing模块的_merge_features_from_multiple_chains函数的作用是合并多个蛋白质链的特征,以便在AlphaFold3处理中多个蛋白质链时形成统一的输入特征。源代码:MSA_FEATURES=('msa','msa_mask','deletion_matrix','deletion_matrix_int')MSA_GAP_IDX=re
- AF3 pair_and_merge函数解读
qq_27390023
python开发语言深度学习人工智能生物信息学
AlphaFold3feature_processing_multimer模块的pair_and_merge函数是AlphaFold3数据处理管道中的重要函数,它主要负责:处理各个链的特征(all_chain_features);决定是否对MSA特征进行配对(pair_msa_sequences);合并各个链的特征,并最终返回一个包含所有特征的字典。源代码:defpair_and_merge(al
- 通过 Groq 后端加载Llama 模型,并调用Function call,也就是通过Groq 后端进行工具的绑定和调用
背太阳的牧羊人
agent+langchainllama语言模型Function_call
完整代码:importgetpassimportosfromlangchain.chat_modelsimportinit_chat_modelfromlangchain_core.toolsimporttoolfromlangchain_core.messagesimportHumanMessage,ToolMessage,SystemMessage#如果没有设置GROQ_API_KEY,则提示
- chatglm3如何进行微调
learner_ctr
人工智能chatglm3llm
一、需要的环境内存:因为在loadmodel时,是先放在内存里面,所以内存不能小,最好在30GB左右显存:如果用half()精度来loadmodel的话(int4是不支持微调的),显存在16GB就可以,比如可以用kaggle的t4gpu,这款性能相当于2070系列,但是显存翻倍python:3.10即可需要安装的包和版本:!pipinstallmodelscope-ihttps://pypi.tu
- Django模型数据新增:详解两种方式
jay丿
django数据库sqlite
Django模型数据新增:详解两种方式在Django框架中,数据模型(Model)是应用的核心组件,它定义了应用的数据结构。向数据库添加新记录是Django开发中的常见操作。本文将详细介绍两种在Django中新增数据的方式:使用模型的save()方法和使用管理器(Manager)的create()方法。方式一:使用模型的save()方法步骤概述:导入模型:首先,需要从应用的models.py文件中
- 网络模型打印 参数量 模型计算量 FLOPs MACs 简单计算方法
L_egend_ing
Python网络python机器学习
目录网络模型打印模型参数量实现效果1实现效果2网络模型打印最简单的就是print(model)importtorchvision.modelsasmodelsnetwork=models.resnet18()print(network)当然,一般需求都比这个多,效果我放在文末尾了。继续往下看模型参数量参考github使用torchinfo,安装使用pipinstalltorchinfofromto
- 【智能体Agent】ReAct智能体的实现思路和关键技术
星星点点洲
LangChain开发过程langchain
基于ReAct(Reasoning+Acting)框架的自主智能体importrefromtypingimportList,Tuplefromlangchain_community.chat_message_histories.in_memoryimportChatMessageHistoryfromlangchain_core.language_models.chat_modelsimportB
- Ollama原生Api接口
小码农吗
AI人工智能deepseek
这里写目录标题1.**生成文本(GenerateText)**2.**流式生成文本(StreamingGenerateText)**3.**列出可用模型(ListModels)**4.**拉取模型(PullModel)**5.**删除模型(DeleteModel)**6.**模型信息(ModelInfo)**7.**聊天模式(ChatMode)**8.**健康检查(HealthCheck)**9.
- python--Django快速入门之数据模型详解
Lee木川
python
一Model模型模型(Model)负责业务对象和数据库的关系映射(ORM)。模型是数据的唯一的、权威的信息源。它包含储存数据的字段和字段限制。通常,每个模型对应数据库中唯一的一张表。每个模型都是django.db.models.Model的一个Python子类。模型的每个属性都表示为数据库中的一个字段。Django提供一套自动生成的用于数据库访问的API。这极大的减轻了开发人员的工作量1ORMOR
- 高效部署通义万相Wan2.1:ComfyUI文生/图生视频实战,工作流直取!
zhangjiaofa
DeepSeekR1&AI人工智能大模型通义万相文生视频图生视频本地部署
手把手教你在免费GPU算力环境、本地环境部署运行ComfyUI工作流,玩转Wan2.1文生视频、图生视频案例实践。01魔搭Notebook运行ComfyUI文生视频工作流step1如何在魔搭中启动Notebook1、打开ModelScope魔搭社区首页,点击我的Notebook2、魔搭社区免费提供的GPU免费算力上体验,选择方式二启动后点击查看Notebook
- 写阿里服务识别车牌号功能遇到的bug【包含使用阿里服务识别车牌号功能代码】
devotemyself
bugpython开发语言
Exceptioninthread"main"java.lang.NoSuchMethodError:com.aliyun.credentials.Client.getCredential()Lcom/aliyun/credentials/models/CredentialModel;atcom.aliyun.teaopenapi.Client.doRequest(Client.java:812)
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- X-LoRA:高效微调 LoRA 系列,实现不同领域知识专家混合模型
yumuing blog
前沿论文解读llama人工智能语言模型
文献卡X-LoRA:MixtureofLow-RankAdapterExperts,aFlexibleFrameworkforLargeLanguageModelswithApplicationsinProteinMechanicsandMolecularDesign作者:EricL.Buehler;MarkusJ.BuehlerDOI:10.48550/arXiv.2402.07148摘要:We
- 深度解析大模型蒸馏方法:原理、差异与案例
赵大仁
AI人工智能大语言模型人工智能
深度解析大模型蒸馏方法:原理、差异与案例1.引言随着深度学习的飞速发展,大模型(LargeModels)如GPT、BERT、ViT逐渐成为AI领域的主流。然而,这些模型通常参数量庞大,计算开销极高,不适用于移动端或低算力环境。因此,模型蒸馏(KnowledgeDistillation,KD)作为一种模型压缩技术,成为高效部署大模型的重要手段。在本篇文章中,我们将深入探讨不同类型的模型蒸馏方法,并通
- kNN算法:对红酒数据进行分类
阿拉保
算法分类数据挖掘
第2关使用sklearn中的kNN算法进行分类fromsklearn.neighborsimportKNeighborsClassifierdefclassification(train_feature,train_label,test_feature):'''使用KNeighborsClassifier对test_feature进行分类:paramtrain_feature:训练集数据:para
- 在手机制造行业中应用大语言模型推进智能制造
txzq
AIGC大数据人工智能智能制造大语言模型
(Harnessingthepoweroflargelanguagemodelsformanufacturing|WorldEconomicForum)智能制造工厂中的机器人臂和工程师协同工作,大语言模型等AI技术正帮助提升生产效率和质量(Harnessingthepoweroflargelanguagemodelsformanufacturing|WorldEconomicForum)。应用场景
- Efficient Large Language Models: A Survey
UnknownBody
SurveyPaper语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EfficientLargeLanguageModels:ASurvey》的翻译。高效的大型语言模型综述摘要1引言2模型为中心的方法3数据为中心的方法4LLM框架5结论摘要大型语言模型(LLM)在自然语言理解、语言生成和复杂推理等重要任务中表现出了非凡的能力,并有可能对我们的社会产生重大影响。然而,这种能力伴随着它们所需的大量资源,突出表明迫切需要开发有效的技术来应对其
- VScode 报错 TypeScript intellisense is disabled on template
shaoin_2
vscodeVue前端零碎typescriptvscodejavascript
发现问题vscode安装VueLanguageFeatures(volar)后出现:TypeScriptintellisenseisdisabledontemplate,youcanconfig“jsx”:“preserve”intsconfigorjsconfigtoenableit,orconfigvueCompilerOptions.experimentalDisableTemplateSu
- 运行时候的导包搜索路径虽然pycharm中标红但不影响程序的执行
火星种萝卜
python实践深度学习人工智能
在pycharm中报如下包找不到frommodels.yolo_layerimportYoloLayer,但是该行的前面已经导入了搜包的路径,运行时并不报错,只是pycharm在分析静态代码结构层面会标红提示找不到包importosimportsysPACKAGE_PARENT='..'SCRIPT_DIR=os.path.dirname(os.path.realpath(os.path.join
- 基于tensorflow使用VGG16实现猫狗识别
Jakari
tensorflowpython
importtensorflowastfimportnumpyasnpfromtensorflow.kerasimportlayers,models,optimizersfromtensorflow.keras.preprocessing.imageimportImageDataGenerator#定义VGG16模型classVGG16(tf.keras.Model):def__init__(se
- django app中的models迁移问题根治方法
kunkun_1230
djangodjango数据库
今天想给某个app里添加一张表,但是忽略了主键冲突问题,再想改的时候就一直提示Youaretryingtoaddanon-nullablefield‘id’tosensorconfigalllogwithoutadefault;wecan’tdothat(thedatabaseneedssomethingtopopulateexistingrows).Pleaseselectafix:Provid
- 大语言模型生成式AI学习笔记——1. 1.1 大语言模型及生成式AI项目生命周期简介——课程简介
预见未来to50
机器学习深度学习(ML/DL)人工智能语言模型学习
GenerativeAIwithLargeLanguageModelsbyDeepLearning.AI&AmazonWebServicesAboutthisCourseInGenerativeAIwithLargeLanguageModels(LLMs),you’lllearnthefundamentalsofhowgenerativeAIworks,andhowtodeployitinreal
- 【HarmonyOS】使用两层Scroll实现一天时间轴和事件卡片的层叠显示
harmonyos-next
简介实现某一天24小时的时间长度和当天事件的页面。实现如下的效果:代码代码架构List_Page:主界面NumberUtil:数字辅助类DateEvenModel:日程实体类ListPageViewModel:界面交互类List_Pageimport{DateEvenModel}from'../Models/DateEvenModel';import{ListPageViewModel}from'
- R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归
TechInk
r语言回归开发语言R语言
R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归在数据分析和建模领域,广义加性模型(GeneralizedAdditiveModels,简称GAMs)是一种常用的非参数统计方法。它结合了广义线性模型(GeneralizedLinearModels,简称GLMs)的灵活性和非线性关系的建模能力,可以适用于各种类型的响应变量,包括二元回归(logistic回归)。本文将介绍如何
- C# ComboBox枚举量绑定的 两种方法
zls365365
c#wpf开发语言
概述ComboBox绑定枚举量的方法有很多,今天列举比较常用的两种,希望对读者们一些帮助!代码讲解前台XMAL:这里因为我使用了Calibrun.MicroWPF框架,他可以通过名称实现自动绑定。后台cs代码:usingCaburn.Micro.Hello.Helper;usingSystem;namespaceCaliburn.Micro.Hello.ViewModels{publicclass
- Neurlps2024论文解析|Understanding Representation of Deep Equilibrium Models from Neural Collapse
SJ_HP
论文合集深度均衡模型神经坍缩隐式神经网络不平衡数据集特征收敛自对偶性质
论文标题UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective从神经坍缩视角理解深度均衡模型的表示论文链接UnderstandingRepresentationofDeepEquilibriumModelsfromNeuralCollapsePerspective论文下载论文作者Haixiang
- python的统计库_python--学习笔记13 统计库
weixin_39959335
python的统计库
可以先绘制散点图查看数据分布情况,然后再使用检验包进行Statsmodels用于探索数据、估计模型、并运行统计检验的Python包。importstatsmodels.apiassmy=df['sepallengthh'][:50]x=df['sepalwidth'][:50]X=sm.add_constant(x)#在现有矩阵添加截距列results=sm.OLS(y,x).fit()#fit方
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理