- 【C语言】Dijkstra算法详解
RumIV
数据结构C/C++算法c语言数据结构
一、引言二、Dijkstra算法原理三、Dijkstra算法的C语言实现四、Dijkstra算法的应用场景五、总结一、引言 Dijkstra算法是一种著名的图论算法,用于解决单源最短路径问题。它是由荷兰计算机科学家EdsgerW.Dijkstra在1956年提出的。本文将详细介绍Dijkstra算法的原理、步骤,并提供C语言的实现示例。二、Dijkstra算法原理 Dijkstra算法的核心思想是
- 从底层原理到实际应用:BFS 算法借助队列征服迷宫
Reese_Cool
数据结构与算法洛谷STL算法宽度优先
文章目录一.题目分析二、算法思路三、BFS算法详解☆BFS算法中队列的操作1.初始化队列2.标记节点已访问&记录初始距离3.循环处理队列(核心逻辑)4.完整BFS示例(迷宫最短路径)关键操作总结在算法领域,迷宫问题一直是经典的挑战。本文将为您深入剖析BFS(广度优先搜索)算法和队列数据结构的紧密联系,揭示它们是如何高效解决迷宫最短路径问题的。输入样例:55010000101000000011100
- 算法思想(九)—— 最短路径
Elylicery
算法思想图论算法导论
9-1最短路径问题和松弛操作例如:路径规划,工作任务规划。之前说讲过的广度优先遍历:其实求出的是一个点(起点)到其他顶点的最短路径问题,通过BFS,得到了一棵树,这棵树就叫做最短路径树(shortestpathtree):即所有顶点距离起始顶点的总权值最小(注意和上一章所讲的最小生成树的区别)求得这个最短路径树的答案,其实就是解决了一个**单源最短路径(SingleSourceShortestPa
- 【数据结构】最短路径问题(BFS/DFS算法,Dijkstra算法,Floyd算法,Bellman-Ford算法)
samarua
#数据结构数据结构算法
BFS算法——严格层序的BFS核心思路原生广度优先遍历的特点本来就是由源点向外发散,我们通过对队列大小的暂存,可以实现严格的按层遍历,层数即路径长度。适用场景因为本算法将层数看作路径长度,所以这要求图的所有边要么无权、要么权值相等。单源的;可以求到某一个点的最短路径,也可以求到所有点的最短路径。代码实现privatevoidDFS(boolean[][]graph,intsource){intle
- 代码随想录第六十二天| Floyd 算法精讲 A * 算法精讲 (A star算法) 最短路算法总结篇
kill bert
代码随想录算法训练营算法
Floyd算法精讲题目描述小明希望在公园散步时找到从一个景点到另一个景点的最短路径。给定公园的景点图,包含N个景点和M条双向道路,每条道路有已知的长度。小明有Q个观景计划,每个计划包含一个起点和终点,求每个计划的最短路径长度。输入包含景点数量N、道路数量M,接着M行每行三个整数u、v、w表示景点u和v之间的双向道路长度为w。然后输入观景计划数量Q,接着Q行每行两个整数start和end。输出每个计
- 代码随想录第六十天| Bellman_ford 队列优化算法(又名SPFA) bellman_ford之判断负权回路 bellman_ford之单源有限最短路
kill bert
代码随想录算法训练营算法
Bellman-Ford队列优化算法(SPFA)精讲题目描述某国共有n个城市,通过m条单向道路连接。每条道路的权值为运输成本减去政府补贴。要求找出从城市1到城市n的最低运输成本路径,若成本为负则表示盈利,若无路径则输出“unconnected”。输入包含n和m,接着m行每行三个整数s、t、v,表示从s到t的道路权值为v。输出为最低成本或“unconnected”。输入输出示例输入:6756-212
- 2.3学习总结(图)
张张张312
学习
图:1.图的基本概念2.图的存储和遍历3.最小生成树4.最短路径5.拓扑排序和关键路径一、图的基本概念图的定义:不允许没有顶点,但边集可以为空{无向图{有向图:边==弧,弧头(有箭头),弧尾{简单图:没有重复边图中不能有从顶点到其自身的边同一条边在图中不能出现两次或者两次以上{多重图完全图:对于一个具有n个顶点的无向完全图,边的最大数量为n(n-1)/2有向完全图n(n-1)路径:路径路径长度回路
- 图论 18. dijkstra算法(朴素版)(以及dijkstra与prim的区别)
Mophead_Zarathustra
小白的代码随想录刷题笔记Mophead的小白刷题笔记leetcodepython代码随想录图论
图论18.dijkstra算法(朴素版)(以及dijkstra与prim的区别)47.参加科学大会(第六期模拟笔试)代码随想录卡码网无难度标识思路:(摘录修改自代码随想录)题目解读:本题就是求最短路,最短路是图论中的经典问题即:给出一个有向图,一个起点,一个终点,问起点到终点的最短路径。接下来,我们来详细讲解最短路算法中的dijkstra算法。dijkstra算法:在有权图(权值非负数)中求从起点
- 图论 24. Floyd算法(多源最短路问题)
Mophead_Zarathustra
小白的代码随想录刷题笔记Mophead的小白刷题笔记leetcodepython代码随想录图论
图论24.Floyd算法(多源最短路问题)97.小明逛公园代码随想录卡码网无难度标识相对于前面的单源最短路解法,这道题扩展到了多源最短路问题。代码随想录:理解了遍历顺序才是floyd算法最精髓的地方。floyd算法的时间复杂度相对较高,适合稠密图且源点较多的情况。如果是稀疏图,floyd是从节点的角度去计算了,例如图中节点数量是1000,就一条边,那floyd的时间复杂度依然是O(n^3)。如果源
- 图论-最短路径算法总结
lkcc
笔记图论数据结构算法
文章目录图论单源最短路径全源最短路径问题最小生成树Prim算法Kruskal算法图论单源最短路径边权全部为正的时候,Dijkstra算法最优秀,还可以优先队列优化。Dijkstra算法朴素版需要循环枚举出来当前的最小值(作为优化的起点)所以可以用大顶堆来优化设置集合S存放已被访问的顶点,然后执行①②每次从集合(未被攻占)中选择与起点最短距离最小的点(记为U),访问并加入集合(被攻占)令顶点U为中介
- 图论--单源最短路
weixin_30399821
BELLMAN-FORD/*bellman可以处理负权的单源最短路问题基本原理:每一次遍历所有的边,在第i次遍历所有边的时候就确定了由源点经过i条边所能到达的最进点由于n个点的最短路径中最多只有n-1条边-->边的遍历“最多”进行n-1次故复杂度为O(NM),有点高呐~优化:当某一轮遍历所有边后都没有进行过松弛操作-->则在该轮之前就已经确定了最短路负环的情况:遍历了n-1次边后仍然可以进行松弛操
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论--最短路问题总结
微臣愚钝
算法(我一生之敌)图论算法
往期文章:算法-图-dijkstra最短路径-CSDN博客Bellman_ford算法--带负权值的单源最短路问题,边列表存储-CSDN博客bellman_ford之判断负权回路-CSDN博客bellman_ford之单源有限最短路-CSDN博客Floyd算法--多源最短路-CSDN博客至此已经讲解了三大最短路算法,分别是Dijkstra、Bellman_ford和Floyd。如果遇到单源且边为正
- (建议收藏)一文多图,彻底搞懂Floyd算法(多源最短路径)
程序员bigsai
数据结构与算法算法动态规划
前言在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径。在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单—贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定。虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
佛渡红尘
计算机应用与算法算法数据结构
最短路径算法是解决图论中节点之间最短路径问题的经典算法。以下是两种常见的最短路径算法:Dijkstra算法和Floyd-Warshall算法。Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即给定一个起点,找到起点到其他所有节点的最短路径。基本思想:初始化距离数组dist[],将起点到自己的距离设为0,到其余各点的距离设为无穷大(表示不可达)。创建一个集合S,用于存放已找到最短路
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 算法训练(leetcode)第四十六天 | 110. 字符串接龙、105. 有向图的完全可达性、106. 岛屿的周长
Star Patrick
刷题日记算法leetcode职场和发展
刷题记录*110.字符串接龙105.有向图的完全可达性邻接矩阵邻接表106.岛屿的周长深搜简化代码*110.字符串接龙题目地址使用广搜。本题相当于求最短路径,因此使用广搜。如何应用广搜是一个难点,因为题目给的是字符串而非图的表示(邻接矩阵、邻接表),因此需要自行构建连接关系。题目要求每一步只能修改一个字符,因此从起始字符串开始,对字符串中的每一个字符进行修改,修改后在输入的字符串列表中查找是否存在
- 【蓝桥杯】真题 2386染色时间 (优先队列BFS)
遥感小萌新
蓝桥杯蓝桥杯宽度优先职场和发展
思路这里每一个格子染色多了时间这一层限制,相当于图的每一边有了权重的限制,那么我们就不能直接用双向队列求最短路。而是使用优先队列。规则是这样的:每一个节点可以多次入队,但是只有第一次出队有效。所以这次我们不会在加入队列时更改标签vis,而是在出队时更改标签。如果在出队时发现vis已经更改,这说明这个元素以前出过队列(不是第一次出队),则直接continuecode我们额外设置两个数组,vis标签数
- Dijkstra算法例题及解析
_gxd_
算法
最短路算法(2)——Dijkstra算法本章一共有三道例题。1.最短路2.TiltheCowsComeHome3.成语接龙1.最短路Description在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?FormatInput输入包括多组数据
- P=NP问题
太翌修仙笔录
deepseek超算法认知架构人工智能知识图谱算法重构
P=NP是什么难题P=NP问题是计算机科学和数学领域中一个著名的未解难题,涉及计算复杂性理论的核心内容。以下是对该问题的详细分析:###**1.P与NP的定义**-**P类(PolynomialTime)**:包含所有能在多项式时间内被**确定性图灵机**解决的决策问题。例如,排序、最短路径问题等均属于P类。-**NP类(NondeterministicPolynomialTime)**:包含所有
- 最短路算法
Emplace
算法图论最短路
算法介绍最短路是一种在一个有权图中求任意两点间的最短路径。算法描述最短路有很多的形式:单源最短路:就是固定起点的最短路。多源最短路:就是不固定起点的最短路。其中Floyd就是求多源最短路的。Floyd算法流程首先我们可以先枚举中间节点kkk,然后再枚举经过这个中间节点的起点和终点。最后对于每对起点和终点我们假设它们为(i,j),那么从i到j的距离就应该是a(i,k)+a(k,j)与a(i,j)的最
- 三个简单最短路
L_M_TY
算法最短路DijkstraFloyd
题目一:E-Train题目链接:E-Train给定N个编号为1至N的城市以及M条铁路。第i条铁路连接城市Ai和Bi,每当时间为Ki的倍数时会同时、分别从Ai和Bi发出开往对方的列车,列车从出发至到达花费Ti时间。开始时你在城市X,输出你到达城市Y的最早时间。若无法到达,输出-1。忽略转车所需要的时间。即,当你T时刻到达某个城市时,可以立刻乘坐T时刻从这个城市发出的列车。数据输入范围:2≤N≤105
- OSPF总结
nihuhui666
网络ospf网络协议
OSPF–开放式最短路径优先协议1.选路–应为ospf是链路状态协议,收集拓扑信息之后将图形结构通过SPF算法转化为树形结构,计算出的路径不会有环路,并且以带宽作为开销的评判标准,所以OSPF选路优于rip2.收敛–因为OSPF的计数器短与rip,所以收敛快3.占用资源–从单一数据包角度来说,因为rip传递的是路由信息,所以资源占用不大而ospf传递拓扑信息,从单个数据包角度说,大于rip.但是o
- ospf的内容解析
ZHGJX-春分时节爱中分
智能路由器网络
当然,以下是您提供的OSPF(开放最短路径优先)接口配置信息的翻译:---**OSPF进程1,路由器ID为12.1.1.2****接口信息**区域:0.0.0.0(未启用MPLSTE)**接口:12.1.1.2(千兆以太网0/0/1)**-成本:1-状态:BDR(备份指定路由器)-类型:广播-最大传输单元(MTU):1500-优先级:1-指定路由器:12.1.1.1-备份指定路由器:12.1.1.
- 代码随想录|二叉树|10二叉树的最小深度
Paper Clouds
算法数据结构c++leetcode决策树
leetcode:111.二叉树的最小深度-力扣(LeetCode)题目给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。示例:给定二叉树[3,9,20,null,null,15,7],返回最小深度2思路同样是前序方法和后序方法,后序遍历的话就是求高度。递归三部曲(1)参数和返回值输入二叉树的根节点,返回int类型的高度(2
- 深入理解OSPF:原理、配置与实战案例
w2361734601
OSPF网络智能路由器enspospfOSPF路由运维
前言在当今复杂的网络环境中,动态路由协议是网络工程师不可或缺的工具之一。OSPF(OpenShortestPathFirst,开放式最短路径优先)作为一种广泛使用的IGP(内部网关协议),以其快速收敛、灵活扩展和高效管理等特点,成为了许多企业网络的首选。本文将深入探讨OSPF的原理、配置方法以及实际应用案例,帮助读者全面掌握这一强大的路由协议。一、OSPF的基本原理协议概述OSPF是一种基于链路状
- 算法系列之深度/广度优先搜索解决水桶分水的最优解及全部解
修己xj
算法算法宽度优先
在算法学习中,广度优先搜索(BFS)适用于解决最短路径问题、状态转换问题等。深度优先搜索(DFS)适合路径搜索等问题。本文将介绍如何利用广度优先搜索解决寻找3个3、5、8升水桶均分8升水的最优解及深度优先搜索寻找可以解决此问题的所有解决方案。问题描述我们有三个水桶,容量分别为3升、5升和8升。初始状态下,8升的水桶装满水,其他两个水桶为空。我们的目标是通过一系列倒水操作,最终使得8升水桶中的水被均
- ASP.NET站点配置以及VS2008下C#、JavaScript联合调试(Ajax) ----以最短路径Dijstra最短路问题为例
刘一哥GIS
《VS/C/C++/C#》ASP.NETIIS最短路径ajax
实验任务描述:用VS2008构造ASP.NET站点开发环境;用ASP.NET完成JavaScript开发调试;用Ext3.0.0完成一个简单的树显示站;WebService程序设计,Dijstra最短路Web服务;JavaScript通过Ajax技术调用WebService;一、Windows下WEB共享设置打开你的WINDOWS,鼠标点开“我的电脑”,寻找下你机器的WINDOWS版本信息,如果你
- 【算法】BFS(最短路径问题、拓扑排序)
秦jh_
算法算法数据结构c++
个人主页:秦jh_-CSDN博客系列专栏:https://blog.csdn.net/qinjh_/category_12862161.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12862161&sharerefer=PC&sharesource=qinjh_&sharefrom=from_link目录边权为1的最短路径问题多源
- PTA L2-001 紧急救援 (25分)
蔚蓝不远
图C++(算法)算法题算法图论
这个题之所以记录是因为这是我写过考察图论知识最全面的一道算法题,题意不是很难读懂,考察到了图论中最短路径–Dijstkra算法,拓展到最短路径条数、最大权值、最短路径等。我认为拿它来复习图论中最短路径这个知识点还是比较适合的L2-001紧急救援(25分)题目描述作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement