- 报告下载丨北京大学:2025年DeepSeek在教育和学术领域的应用场景与案例(上)报告下载丨德勤:2025年生成式AI档案报告下载丨SuperCLUE 中文大模型基准测评 2025
智能计算研究中心
人工智能
该报告全面探讨了DeepSeek在教育和学术领域的应用。DeepSeek在2024-2025年推出的模型引发国际关注,其通过提升推理能力、全量开源、降低成本及国产自主研发等优势,在教育行业推动了范式革命。报告涵盖了从学前教育到特殊教育的各个阶段,列举了高校如北京大学的学科专业问答工具、北大青鸟的实训平台等应用案例。为教育工作者提供了系统指导,有助于推动教育创新,培养适应AI时代的各类人才。
- Apache Seata < 2.3.0 raft反序列化漏洞
墨菲安全
ApacheSeata反序列化漏洞CVE-2025-32897
【高危】ApacheSeata<2.3.0raft反序列化漏洞漏洞描述ApacheSeata(incubating)是一款开源的分布式事务解决方案,用于在微服务架构下提供高性能和简单易用的分布式事务服务。受影响版本中,SeataServer的Raft模块的CustomDeserializer直接通过Class.forName()加载用户可控的类名,未做安全校验,攻击者可借此利用服务端已有的恶意链实
- 大模型学习 (Datawhale_Happy-LLM)笔记7: Encoder-Decoder PLM
lxltom
学习笔记languagemodel自然语言处理神经网络人工智能深度学习
大模型学习(Datawhale_Happy-LLM)笔记7:Encoder-DecoderPLM1.Encoder-Decoder架构概述1.1架构基础Encoder-DecoderPLM是基于原始Transformer架构的完整实现,它同时保留了编码器(Encoder)和解码器(Decoder)两个核心组件。这种设计使得模型能够兼具文本理解和生成的双重能力,特别适合处理序列到序列(Seq2Seq
- WPF 之 exe 单文件打包工具:LibZ
外来物种
桌面软件WPFC#
▪前言在VS开发过程中我们需要不断的编译软件并进行测试,同时VS会自动在项目跟目录的\bin\Debug文件夹里生成一系列文件(包括程序执行的主exe文件)。对于简单WPF程序,我们通常可以直接拷贝[ProjectSub]\bin\Debug下程序主exe文件就可以到其他机子使用了,当然前提是机子要已经装了对应的.NetFormework版本库但是有时候我们会在项目引入其他第三方库(非.Net框架
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 从性能优化赛到社区Committer,走进赵宇捷在Apache Fory的成长之路
ApacheFory是一个基于JIT和零拷贝的高性能多语言序列化框架,实现了高效紧凑的序列化协议,提供极致的性能、压缩率和易用性。在多语言序列化框架技术领域取得了重大突破,推动序列化技术步入高性能易用新篇章!这一切,都源自全球开发者对开源的热忱。今天,一起走近这些用代码编织跨语言数据之网的Committer~一、自我介绍您的全名:赵宇捷当前职位/角色:后端开发工程师主要领域/方向:金融加入社区/项
- CVPR2024无监督Unsupervised论文17篇速览
木木阳
CVPR无监督unsupervised
Paper1GuidedSlotAttentionforUnsupervisedVideoObjectSegmentation摘要小结:这段话的中文翻译如下:无监督视频对象分割旨在分割视频序列中最突出的对象。然而,复杂的背景和多个前景对象的存在使这项任务变得具有挑战性。为了解决这一问题,我们提出了一种引导式槽注意力网络,以加强空间结构信息并获得更好的前景-背景分离。初始化时带有查询引导的前景和背景
- python内置函数——enumerate()
Believer_abby
python内置函数python
说明:emumerate()函数用于将一个可遍历的序列(如列表,元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环中。语法:enumerate(sequence,[start=0])参数:sequence:表示一个序列、迭代器或其他支持迭代的对象;start:下标起始位置,默认为0。使用:seasons=['spring','summer','fall','winter'
- 成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
科研的力量
人工智能ChatGPTchatgpt人工智能
课程将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的研究人员还是好奇的从业者,本课程都将为分析和解释遥感数据开辟新的、有效的方法,使你的工作更具影响力和前沿性。遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面
- QT中翻译文件生成步骤
小小码农Come on
Qtqt
1、配置工具环境变量设置path:D:\Qt\Qt5.15\5.15.2\msvc2019_64\binD:\Qt\Qt5.15\5.15.2\msvc2019\bin主要使用工具:lupdate、linguist、lrelease都在如上路径的bin目录下2、提取翻译字符串(lupdate)用来生成/更新.ts翻译文件进入目录D:\Code\ds-cmifinaldetect\plugins\p
- 创意,创新,动手,懂我
waterHBO
创意来源编程创意
对于上面的聊天,请帮我写个文章来总结一下,这几个案例视频,分别讲了什么东西,启发启示是什么把新鲜新奇的地方,保存下来。语言简洁,凝练。不要啰嗦、不要重复。分结构,输出为md格式,请使用有序列表。其他要求:1语言幽默有趣,平易近人,有吸引力。2.用中文写。单独新建一个文件。3.请帮我分条理,看起来很清晰。AIApp创富三部曲:从灵感到现实的秘籍解析序言:你的下一个App,藏在浴缸、通勤路和与AI的对
- 提示技术系列——主动提示
AIGC包拥它
提示技术人工智能promptpythonlangchain
什么是提示技术?提示技术是实现提示工程目标的具体技术手段,是提示工程中的“工具库”。什么又是提示工程?提示工程是指通过设计、优化和迭代输入到大语言模型(LLM)的提示(Prompt),系统性提升模型输出质量(如相关性、准确性、可控性)的实践领域。它是一个覆盖全流程的方法论,包括:明确目标任务(如生成教学内容、问答、翻译);设计提示结构(如指令、上下文、示例);选择模型与参数(如温度、top_p);
- Python中filter()函数详解
有奇妙能力吗
Python知识分享python开发语言
什么是filter()?filter()是Python内置的一个函数,它的作用是:从一个可迭代对象(如列表、元组等)中筛选出符合条件的元素,生成一个新的迭代器。你可以把它理解成一个“过滤器”:你给它一堆数据和一个筛选条件,它会帮你把符合这个条件的数据挑出来。基本语法filter(函数,可迭代对象)第一个参数是一个函数,它用来判断每个元素是否符合条件。第二个参数是一个可迭代对象,比如列表、元组、字符
- FFmpeg中TS与MP4格式的extradata差异详解
码流怪侠
音视频基础ffmpegMP4TS音视频extradata视频编解码实时音视频
在视频处理中,extradata是存储解码器初始化参数的核心元数据,直接影响视频能否正确解码。本文深入解析TS和MP4格式中extradata的结构差异、存储逻辑及FFmpeg处理方案。一、extradata的核心作用extradata是解码必需的参数集合,包含:H.264:SPS(序列参数集)、PPS(图像参数集)H.265:VPS(视频参数集)、SPS、PPS音频:采样率、声道数等配置其核心功
- 深入探索 Pdfium.Net:在 .NET 中处理和渲染 PDF 文件
在现代软件开发中,PDF文件的处理变得愈加重要,尤其是在文档管理、报表生成和在线内容展示等领域。为了高效地处理和渲染PDF文件,开发者通常会选择一些强大的PDF处理库。而Pdfium.Net,作为PDFium库的.NET封装,提供了一个高效且易于使用的解决方案,能够帮助开发者在.NET环境中轻松地处理和渲染PDF文件。本文将详细介绍如何在.NET中使用Pdfium.Net进行PDF文件渲染、文本提
- 嵌入模型 vs 大语言模型:语义理解能力的本质区别与应用场景
chenkangck50
AI大模型语言模型人工智能机器学习
嵌入模型vs大语言模型:语义理解能力的本质区别与应用场景(实战视角)一句话总结嵌入模型的“理解”是向量表示和相似性匹配,适合做召回;大语言模型的“理解”是上下文+逻辑+世界知识综合判断,适合做分析与生成。重点是可以结合prompt和本身具有的知识两类模型的本质区别能力项嵌入模型(如BGE、SBERT)大语言模型(如GPT、GLM、DeepSeek)输出形式向量(如768维)自然语言文本(如答案、解
- 无需多卡集群,单卡运行扩散模型的技术突破与实践
源客z
stablediffusion
近年来,扩散模型(DiffusionModels)在图像、视频、3D生成等领域取得巨大进展。然而,传统扩散模型往往依赖多卡集群(如8×A100)进行高效训练与推理,这使得个人开发者和中小团队的应用受限。幸运的是,随着模型架构优化、量化技术、推理加速方案的发展,越来越多的开源扩散模型可以在单张消费级显卡(如RTX4090、T4、A6000)上运行,并且性能接近或超越原生大规模模型。本文整理了当前可在
- 分布式 ID 生成方案对比:Snowflake、UUID、KSUID 该怎么选?
田猿笔记
知识集合nodeJs高级应用分布式node.js
分布式ID生成方案对比:Snowflake、UUID、KSUID该怎么选?在分布式系统中,如何生成全局唯一ID是一个常见问题。不同的ID生成方案各有优缺点,本文将对比Snowflake、Sonyflake、UUIDv1/v4、XID、KSUID以及自定义ID,并给出Node.js实现示例,帮助你选择最适合的方案。1.为什么需要分布式ID?在单机系统中,可以使用数据库自增ID(如MySQL的AUTO
- WIN11+VSCODE搭建的c/c++环境调试报错解决
xtmatao
C语言编程vscodec语言c++
解决调试报错前面win11+vscode搭建的c/c++环境,ctrl+shift+B生成正常,cttl+F5运行正常。今天打断点逐步调试时报错,提示找不到库文件。解决方案如下:下载mingw-w64源码库:(两种途径)通过MSYS2UCRT64终端下载pacman-Sgit#安装gitgitclonehttps://git.code.sf.net/p/mingw-w64/mingw-w64#下载
- 易语言实现钉钉PC端高频率链接批量打开系统
神经网络697344
开发语言开发工具网络钉钉matlab开发语言算法信息可视化机器学习
易语言实现钉钉PC端高频率链接批量打开系统一、需求分析与技术方案核心需求:在钉钉PC端私聊消息中嵌入特殊格式链接用户点击后通过自定义协议唤醒本地程序支持每分钟处理10万次请求的批量操作实现链接的批量生成和管理技术方案:发送加密链接钉钉客户端协议拦截器链接解析引擎批量处理队列线程池控制器浏览器操作模块
- MATLAB代码实现了一个完整的ARIMA时间序列分析与预测流程
神经网络697344
算法深度学习MATLABmatlab信息可视化开发语言
%%1.数据准备years=(2010:2024)';data=[11894,12277,12777,13262,13902,14524,15037,15961,16724,...17767,19064,20056,20978,21676,22023]';%创建时间序列对象ts=timeseries(data,years,'Name','65岁以上人口');ts.TimeInfo.Units='y
- 【分布式 ID】生成唯一 ID 的几种方式
也无风雨晴
工具分布式分布式ID
文章目录1.什么是唯一ID2.UUID2.1优点2.2缺点3.数据库自增ID3.1优点3.2缺点4.利用redis来实现自增id4.1优点4.2缺点5.雪花算法5.1优点5.2缺点6.数据库号段6.1优点6.2缺点7.小结1.什么是唯一ID分布式ID是指在分布式系统中需要生成的全局唯一的标识符。比如在电商、物流等行业,每笔订单都需要一个唯一的订单ID。通过这个ID,商家可以跟踪订单的状态,包括下单
- 在Flutter中生成App Bundle并上架Google Play
getapi
flutter
Rantool要在Flutter中生成AppBundle并上架GooglePlay,请按照以下步骤操作:1.准备签名密钥首先需要创建一个密钥库用于签名:keytool-genkey-v-keystoreupload-keystore.jks-keyalgRSA-keysize2048-validity10000-aliasupload2.配置签名在项目的android目录下创建key.proper
- AI工作流平台对比分析
come11234
Ai人工智能
以下是和「扣子工作流」(KoFlow)类似的AI工作流平台对比分析,涵盖主流工具的核心特点、使用方式、优缺点及区别:一、主流工作流平台分类平台类型核心定位代表用户扣子(KoFlow)低代码AI流程中文场景优化,深度集成大模型中文开发者/企业LangChain代码框架开发者灵活构建AI链Python开发者/AI工程师LlamaIndex数据增强框架企业级RAG(检索增强生成)数据工程师/知识库应用M
- 扣子工作流能实现哪些功能和单纯的提示词问大模型的区别
好的,我们来详细解释一下扣子工作流(KoFlow)的功能、优势以及与单纯使用提示词调用大模型的区别。核心概念:单纯提示词调用大模型:用户直接编写一段文本(提示词)发送给大模型,大模型根据这个提示词一次性生成回复。整个过程是“单次交互”。扣子工作流:用户构建一个可视化或代码化的流程。这个流程可以包含多个步骤,每个步骤可以执行不同的任务(调用大模型、调用API、执行代码、判断条件、循环等),步骤之间可
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- C语言教学大变革!DeepSeek如何改变高职院校编程课堂?
武汉唯众智创
c语言开发语言程序设计Deepseek
一、引言在当今数字化转型的浪潮中,程序设计与分析能力已成为高职教育中不可或缺的核心竞争力。作为编程语言的基础,C语言不仅训练学生的计算思维,还培养其算法实现能力。然而,当前高职院校的C语言教学面临诸多挑战,如实践环节薄弱、学生创新能力不足等。DeepSeek等新一代智能编码支持系统的出现,为这一现状带来了转机。该系统融合了深度神经网络与语义解析技术,能够智能生成代码、优化缺陷检测、解构程序逻辑,并
- DeepMind 发布 AlphaGenome,1 秒内完成所有模态和细胞类型的变异效应预测
hyperai
谷歌DeepMind的Alpha系列再添新成员——AlphaGenome,其能够更全面、准确地预测人类DNA序列中单个变异或突变,如何影响一系列调控基因的生物过程。AlphaGenome模型以长达100万个碱基对的DNA序列为输入,预测数千种与其调控活性相关的分子属性,同时还可以通过比较变异与未变异序列的预测结果,评估基因变异或突变的影响。该模型建立在DeepMind此前的基因组模型Enforme
- 图论算法的大家庭——c++中的图论算法
imlarry0616
深度优先算法图论
图论算法是处理图结构问题的核心工具,广泛应用于路径规划、社交网络分析、计算机网络等领域。以下从基础概念、经典算法及其代码实现展开详细介绍,涵盖DFS、BFS、最短路径、最小生成树等核心内容,并附C++代码示例及注释。一、图的基础概念图的定义:由顶点(Vertex)集合V和边(Edge)集合E组成,记作G=(V,E)。分类:无向图:边无方向(如社交网络中的朋友关系)。有向图:边有方向(如网页链接关系
- AI人工智能领域:Bard的崛起之路
AIGC应用创新大全
人工智能bardai
AI人工智能领域:Bard的崛起之路关键词:Bard、GoogleAI、大语言模型、对话式AI、自然语言处理、生成式AI、AI竞争摘要:本文深入探讨GoogleBard的发展历程、技术架构及其在AI领域的地位。我们将从Bard的诞生背景开始,分析其核心技术原理,比较与其他大语言模型的异同,并通过实际案例展示其应用场景。最后展望Bard的未来发展方向及面临的挑战。背景介绍目的和范围本文旨在全面解析G
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理