Pytorch ResNet Fashion-Mnist

pytorch 实现 ResNet on Fashion-MNIST

from __future__ import print_function
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
show=ToPILImage()
import numpy as np
import matplotlib.pyplot as plt


#
batchSize=128

##load data
transform = transforms.Compose([transforms.Resize(96),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batchSize, shuffle=True, num_workers=0)

testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batchSize, shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def imshow(img):
    img = img / 2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))

####network
class Residual(nn.Module):
    def __init__(self,in_channel,num_channel,use_conv1x1=False,strides=1):
        super(Residual,self).__init__()
        self.relu=nn.ReLU()
        self.bn1=nn.BatchNorm2d(in_channel,eps=1e-3)
        self.conv1=nn.Conv2d(in_channels =in_channel,out_channels=num_channel,kernel_size=3,padding=1,stride=strides)
        self.bn2=nn.BatchNorm2d(num_channel,eps=1e-3)
        self.conv2=nn.Conv2d(in_channels=num_channel,out_channels=num_channel,kernel_size=3,padding=1)
        if use_conv1x1:
            self.conv3=nn.Conv2d(in_channels=in_channel,out_channels=num_channel,kernel_size=1,stride=strides)
        else:
            self.conv3=None


    def forward(self, x):
        y=self.conv1(self.relu(self.bn1(x)))
        y=self.conv2(self.relu(self.bn2(y)))
        # print (y.shape)
        if self.conv3:
            x=self.conv3(x)
        # print (x.shape)
        z=y+x
        return z

# blk = Residual(3,3,True)
# X = Variable(torch.zeros(4, 3, 96, 96))
# out=blk(X)

def ResNet_block(in_channels,num_channels,num_residuals,first_block=False):
    layers=[]
    for i in range(num_residuals):
        if i==0 and not first_block:
            layers+=[Residual(in_channels,num_channels,use_conv1x1=True,strides=2)]
        elif i>0 and not first_block:
            layers+=[Residual(num_channels,num_channels)]
        else:
            layers += [Residual(in_channels, num_channels)]
    blk=nn.Sequential(*layers)
    return blk


class ResNet(nn.Module):
    def __init__(self,in_channel,num_classes):
        super(ResNet,self).__init__()
        self.block1=nn.Sequential(nn.Conv2d(in_channels=in_channel,out_channels=64,kernel_size=7,stride=2,padding=3),
                                  nn.BatchNorm2d(64),
                                  nn.ReLU(),
                                  nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
        self.block2=nn.Sequential(ResNet_block(64,64,2,True),
                                  ResNet_block(64,128,2),
                                  ResNet_block(128,256,2),
                                  ResNet_block(256,512,2))
        self.block3=nn.Sequential(nn.AvgPool2d(kernel_size=3))
        self.Dense=nn.Linear(512,10)


    def forward(self,x):
        y=self.block1(x)
        y=self.block2(y)
        y=self.block3(y)
        y=y.view(-1,512)
        y=self.Dense(y)
        return y


net=ResNet(1,10).cuda()
print (net)
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(net.parameters(),lr=0.05,momentum=0.9)

#train
print ("training begin")
for epoch in range(3):
    start = time.time()
    running_loss=0
    for i,data in enumerate(trainloader,0):
        # print (inputs,labels)
        image,label=data


        image=image.cuda()
        label=label.cuda()
        image=Variable(image)
        label=Variable(label)

        # imshow(torchvision.utils.make_grid(image))
        # plt.show()
        # print (label)
        optimizer.zero_grad()

        outputs=net(image)
        # print (outputs)
        loss=criterion(outputs,label)

        loss.backward()
        optimizer.step()

        running_loss+=loss.data

        if i%100==99:
            end=time.time()
            print ('[epoch %d,imgs %5d] loss: %.7f  time: %0.3f s'%(epoch+1,(i+1)*batchSize,running_loss/100,(end-start)))
            start=time.time()
            running_loss=0
print ("finish training")


#test
net.eval()
correct=0
total=0
for data in testloader:
    images,labels=data
    images=images.cuda()
    labels=labels.cuda()
    outputs=net(Variable(images))
    _,predicted=torch.max(outputs,1)
    total+=labels.size(0)
    correct+=(predicted==labels).sum()
print('Accuracy of the network on the %d test images: %d %%' % (total , 100 * correct / total))

运行过程

ResNet(
  (block1): Sequential(
    (0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
    (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  )
  (block2): Sequential(
    (0): Sequential(
      (0): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (1): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
    )
    (1): Sequential(
      (0): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn2): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv3): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
      )
      (1): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
    )
    (2): Sequential(
      (0): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn2): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
      )
      (1): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
    )
    (3): Sequential(
      (0): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn2): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
      )
      (1): Residual(
        (relu): ReLU()
        (bn1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
    )
  )
  (block3): Sequential(
    (0): AvgPool2d(kernel_size=3, stride=3, padding=0)
  )
  (Dense): Linear(in_features=512, out_features=10, bias=True)
)
training begin
[epoch 1,imgs 12800] loss: 0.6906891  time: 5.284 s
[epoch 1,imgs 25600] loss: 0.4192125  time: 5.254 s
[epoch 1,imgs 38400] loss: 0.3470914  time: 5.261 s
[epoch 1,imgs 51200] loss: 0.3338268  time: 5.266 s
[epoch 2,imgs 12800] loss: 0.2725625  time: 5.286 s
[epoch 2,imgs 25600] loss: 0.2590218  time: 5.277 s
[epoch 2,imgs 38400] loss: 0.2629448  time: 5.273 s
[epoch 2,imgs 51200] loss: 0.2552892  time: 5.283 s
[epoch 3,imgs 12800] loss: 0.2204756  time: 5.299 s
[epoch 3,imgs 25600] loss: 0.2263550  time: 5.292 s
[epoch 3,imgs 38400] loss: 0.2150247  time: 5.294 s
[epoch 3,imgs 51200] loss: 0.2215548  time: 5.299 s
finish training
Accuracy of the network on the 10000 test images: 90 %

你可能感兴趣的:(Pytorch ResNet Fashion-Mnist)