一、定义
二、实现
import torch
from transformers import BitsAndBytesConfig
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", quantization_config=config)
from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)
from peft import LoraConfig
config = LoraConfig(
r=16,
lora_alpha=8,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
from peft import get_peft_model
model = get_peft_model(model, config)
def quantize_and_save():
args = arg_parse()
# Download weights and configure LoRA
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, token=args.token, trust_remote_code=True)
if any(name in args.model_name_or_path.lower() for name in ["llama", "mistral", "falcon"]):
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, token=args.token, trust_remote_code=True)
task_type = TaskType.CAUSAL_LM
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"]
elif any(name in args.model_name_or_path.lower() for name in ["bart", "t5"]):
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path, token=args.token)
task_type = TaskType.SEQ_2_SEQ_LM
target_modules = ["q_proj", "k_proj", "v_proj", "fc1", "fc2", "out_proj"]
elif any(name in args.model_name_or_path.lower() for name in ["deberta", "roberta", "bert"]):
model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, token=args.token)
task_type = TaskType.SEQ_CLS
target_modules = ["query_proj", "key_proj", "value_proj", "dense"] # embeddings not supported by peft
else:
raise NotImplementedError("Other models not supported yet.")
# Config of LoftQ
loftq_config = LoftQConfig(loftq_bits=args.bits, loftq_iter=args.iter)
lora_config = LoraConfig(
task_type=task_type,
inference_mode=True,
r=args.rank,
lora_alpha=16 if task_type is TaskType.CAUSAL_LM else args.rank,
lora_dropout=0.1,
target_modules=target_modules,
init_lora_weights="loftq",
loftq_config=loftq_config,
)
# Obtain LoftQ model
lora_model = get_peft_model(model, lora_config)
base_model = lora_model.get_base_model()
# Save LoftQ model
model_name = args.model_name_or_path.split("/")[-1] + f"-{args.bits}bit" + f"-{args.rank}rank"
base_model_dir = os.path.join(args.save_dir, model_name)
lora_model_dir = os.path.join(args.save_dir, model_name, "loft_init")
# save lora adapters first
lora_model.base_model.peft_config[
"default"
].base_model_name_or_path = base_model_dir # This can be a local path or Hub model id
lora_model.base_model.peft_config["default"].init_lora_weights = True # Don't apply LoftQ when loading again
lora_model.save_pretrained(lora_model_dir)
print_model(lora_model, "lora_model")
# remove lora adapters and save the backbone
unwrap_model(base_model)
base_model.save_pretrained(base_model_dir)
tokenizer.save_pretrained(base_model_dir)
print_model(base_model, "base_model")
return base_model_dir, lora_model_dir
SAVE_DIR="model_zoo/loftq/"
python quantize_save_load.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \ # high-precision model id in HF
--token HF_TOKEN \ # your HF token if the model is private, e.g., llama-2
--bits 4 \
--iter 5 \
--rank 16 \
--save_dir $SAVE_DIR
加载:
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
MODEL_DIR = "model_zoo/loftq/Llama-2-7b-hf-4bit-16rank"
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_DIR,
torch_dtype=torch.bfloat16,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type='nf4',
),
)
peft_model = PeftModel.from_pretrained(
base_model,
MODEL_DIR,
subfolder="loftq_init",
is_trainable=True,
)
# Do training with peft_model ...
from transformers import AutoTokenizer, AutoModelForCausalLM
quantized_model = AutoModelForCausalLM.from_pretrained(
"ISTA-DASLab/Mixtral-8x7b-AQLM-2Bit-1x16-hf",
torch_dtype="auto", device_map="auto", low_cpu_mem_usage=True,
)
from peft import LoraConfig, TaskType
from peft import get_peft_model
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["layers.28.self_attn.v_proj"])
quantized_model = get_peft_model(quantized_model, peft_config)
quantized_model.print_trainable_parameters()
import torch
from transformers import EetqConfig
config = EetqConfig("int8")
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", quantization_config=config)
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16,
lora_alpha=8,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
from transformers import HqqConfig, AutoModelForCausalLM
quant_config = HqqConfig(nbits=4, group_size=64)
quantized_model = AutoModelForCausalLM.from_pretrained(save_dir_or_hfhub, device='cuda', quantization_config=quant_config)
peft_config = LoraConfig(...)
quantized_model = get_peft_model(quantized_model, peft_config)