图论篇--代码随想录算法训练营第五十八天打卡|拓扑排序,dijkstra(朴素版)

拓扑排序

题目链接:117. 软件构建

题目描述:

某个大型软件项目的构建系统拥有 N 个文件,文件编号从 0 到 N - 1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件 A 依赖于文件 B,则必须在处理文件 A 之前处理文件 B (0 <= A, B <= N - 1)。请编写一个算法,用于确定文件处理的顺序。

解题思路:

拓扑排序:给出一个 有向图,把这个有向图转成线性的排序 

拓扑排序的过程:

  1. 找到入度为0 的节点,加入结果集
  2. 将该节点从图中移除

代码:

#include 
#include 
#include 
#include 
using namespace std;
int main() {
    int m, n, s, t;
    cin >> n >> m;
    vector inDegree(n, 0); // 记录每个文件的入度

    unordered_map> umap;// 记录文件依赖关系
    vector result; // 记录结果

    while (m--) {
        // s->t,先有s才能有t
        cin >> s >> t;
        inDegree[t]++; // t的入度加一
        umap[s].push_back(t); // 记录s指向哪些文件
    }
    queue que;
    for (int i = 0; i < n; i++) {
        // 入度为0的文件,可以作为开头,先加入队列
        if (inDegree[i] == 0) que.push(i);
        //cout << inDegree[i] << endl;
    }
    // int count = 0;
    while (que.size()) {
        int  cur = que.front(); // 当前选中的文件
        que.pop();
        //count++;
        result.push_back(cur);
        vector files = umap[cur]; //获取该文件指向的文件
        if (files.size()) { // cur有后续文件
            for (int i = 0; i < files.size(); i++) {
                inDegree[files[i]] --; // cur的指向的文件入度-1
                if(inDegree[files[i]] == 0) que.push(files[i]);
            }
        }
    }
    if (result.size() == n) {
        for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
        cout << result[n - 1];
    } else cout << -1 << endl;


}

dijkstra(朴素版)

题目链接:47. 参加科学大会(第六期模拟笔试)

题目描述:

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。

小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。

小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

解题思路:

dijkstra算法:在有权图(权值非负数)中求从起点到其他节点的最短路径算法。

需要注意两点:

  • dijkstra 算法可以同时求 起点到所有节点的最短路径
  • 权值不能为负数

dijkstra三部曲

  1. 第一步,选源点到哪个节点近且该节点未被访问过
  2. 第二步,该最近节点被标记访问过
  3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)

minDist数组 用来记录 每一个节点距离源点的最小距离

代码:

#include 
#include 
#include 
using namespace std;
int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector> grid(n + 1, vector(n + 1, INT_MAX));
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        grid[p1][p2] = val;
    }

    int start = 1;
    int end = n;

    // 存储从源点到每个节点的最短距离
    std::vector minDist(n + 1, INT_MAX);

    // 记录顶点是否被访问过
    std::vector visited(n + 1, false);

    minDist[start] = 0;  // 起始点到自身的距离为0

    for (int i = 1; i <= n; i++) { // 遍历所有节点

        int minVal = INT_MAX;
        int cur = 1;

        // 1、选距离源点最近且未访问过的节点
        for (int v = 1; v <= n; ++v) {
            if (!visited[v] && minDist[v] < minVal) {
                minVal = minDist[v];
                cur = v;
            }
        }

        visited[cur] = true;  // 2、标记该节点已被访问

        // 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (int v = 1; v <= n; v++) {
            if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
                minDist[v] = minDist[cur] + grid[cur][v];
            }
        }

    }

    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径

}

你可能感兴趣的:(leetcode,算法,图论,数据结构,c++)