linux下so动态库一些不为人知的秘密

linux 下有动态库和静态库,动态库以.so为扩展名,静态库以.a为扩展名。二者都使用广泛。本文主要讲动态库方面知识。

   基本上每一个linux 程序都至少会有一个动态库,查看某个程序使用了那些动态库,使用ldd命令查看

  1. # ldd /bin/ls
  2. linux-vdso.so.1 => (0x00007fff597ff000)
  3. libselinux.so.1 => /lib64/libselinux.so.1 (0x00000036c2e00000)
  4. librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)
  5. libcap.so.2 => /lib64/libcap.so.2 (0x00000036c4a00000)
  6. libacl.so.1 => /lib64/libacl.so.1 (0x00000036d0600000)
  7. libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
  8. libdl.so.2 => /lib64/libdl.so.2 (0x00000036c1600000)
  9. /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
  10. libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)
  11. libattr.so.1 => /lib64/libattr.so.1 (0x00000036cf600000)

   这么多so,是的。使用ldd显示的so,并不是所有so都是需要使用的,下面举个例子

main.cpp

#include <stdio.h>

#include <iostream>

#include <string>



using namespace std;



int main ()

{

   cout << "test" << endl;

   return 0;

}

   使用缺省参数编译结果

  1. # g++ -o demo main.cpp
  2. # ldd demo
  3.     linux-vdso.so.1 => (0x00007fffcd1ff000)
  4.         libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f4d02f69000)
  5.         libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
  6.         libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
  7.         libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
  8. /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

   如果我链接一些so,但是程序并不用到这些so,又是什么情况呢,下面我加入链接压缩库,数学库,线程库

  1. # g++ -o demo -lz -lm -lrt main.cpp
  2. # ldd demo
  3.         linux-vdso.so.1 => (0x00007fff0f7fc000)
  4. libz.so.1 => /lib64/libz.so.1 (0x00000036c2600000)
  5. librt.so.1 => /lib64/librt.so.1 (0x00000036c2200000)
  6.         libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff6ab70d000)
  7. libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
  8.         libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
  9.         libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
  10.         libpthread.so.0 => /lib64/libpthread.so.0 (0x00000036c1a00000)
  11. /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)

  看看,虽然没有用到,但是一样有链接进来,那看看程序启动时候有没有去加载它们呢

  1. # strace ./demo
  2.     execve("./demo", ["./demo"], [/* 30 vars */]) = 0
  3. ... = 0
  4. open("/lib64/libz.so.1", O_RDONLY) = 3
  5. ...
  6. close(3) = 0
  7. open("/lib64/librt.so.1", O_RDONLY) = 3
  8. ...
  9. close(3) = 0
  10. open("/usr/lib64/libstdc++.so.6", O_RDONLY) = 3
  11. ...
  12. close(3) = 0
  13. open("/lib64/libm.so.6", O_RDONLY) = 3
  14. ...
  15. close(3) = 0
  16. open("/lib64/libgcc_s.so.1", O_RDONLY) = 3
  17. ...
  18. close(3) = 0
  19. open("/lib64/libc.so.6", O_RDONLY) = 3
  20. ...
  21. close(3) = 0
  22. open("/lib64/libpthread.so.0", O_RDONLY) = 3
  23. ...
  24. close(3) = 0
  25. ...

  看,有加载,所以必定会影响进程启动速度,所以我们最后不要把无用的so编译进来,这里会有什么影响呢?

   大家知不知道linux从程序(program或对象)变成进程(process或进程),要经过哪些步骤呢,这里如果详细的说,估计要另开一篇文章。简单的说分三步:

    1、fork进程,在内核创建进程相关内核项,加载进程可执行文件;

    2、查找依赖的so,一一加载映射虚拟地址

    3、初始化程序变量。

  可以看到,第二步中dll依赖越多,进程启动越慢,并且发布程序的时候,这些链接但没有使用的so,同样要一起跟着发布,否则进程启动时候,会失败,找不到对应的so。所以我们不能像上面那样,把一些毫无意义的so链接进来,浪费资源。但是开发人员写makefile 一般有没有那么细心,图省事方便,那么有什么好的办法呢。继续看下去,下面会给你解决方法。

  先使用 ldd -u demo 查看不需要链接的so,看下面,一面了然,无用的so全部暴露出来了吧

  1. # ldd -u demo
  2. Unused direct dependencies:
  3. /lib64/libz.so.1
  4. /lib64/librt.so.1
  5. /lib64/libm.so.6
  6. /lib64/libgcc_s.so.1

  使用 -Wl,--as-needed 编译选项

  1. # g++ -Wl,--as-needed -o demo -lz -lm -lrt main.cpp
  2. # ldd demo
  3.         linux-vdso.so.1 => (0x00007fffebfff000)
  4.         libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff665c05000)
  5.         libc.so.6 => /lib64/libc.so.6 (0x00000036c1200000)
  6.         libm.so.6 => /lib64/libm.so.6 (0x00000036c1e00000)
  7. /lib64/ld-linux-x86-64.so.2 (0x00000036c0e00000)
  8.         libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000036c7e00000)
  9. # ldd -u demo
  10. Unused direct dependencies:


  呵呵,办法很简单省事吧,本文主要讲so依赖的一些问题,下一篇将介绍so的路径方面一些不为人知的小秘密

我们知道linux链接so 有两种途径:显示和隐式。所谓显示就是程序主动调用dlopen打开相关so;这里需要补充的是,如果使用显示链接,上篇文章讨论的那些问题都不存在。首先,dlopen的so使用ldd是查看不到的。其次,使用dlopen打开的so并不是在进程启动时候加载映射的,而是当进程运行到调用dlopen代码地方才加载该so,也就是说,如果每个进程显示链接a.so;但是如果发布该程序时候忘记附带发布该a.so,程序仍然能够正常启动,甚至如果运行逻辑没有触发运行到调用dlopen函数代码地方。该程序还能正常运行,即使没有a.so.
既然显示加载这么多优点,那么为什么实际生产中很少码农使用它呢, 主要原因还是起使用不是很方便,需要开发人员多写不少代码。所以不被大多数码农使用,还有一个重要原因应该是能提前发现错误,在部署的时候就能发现缺少哪些so,而不是等到实际上限运行的时候才发现缺东少西。
下面举个工作中最常碰到的问题,来引申出本篇内容吧。
写一个最简单的so, tmp.cpp

int test()

{

     return 20;

}


  编译=>链接=》运行, 下面main.cpp 内容请参见上一篇文章。
[stevenrao]$ g++ -fPIC -c tmp.cpp
[stevenrao]$ g++ -shared -o libtmp.so tmp.o
[stevenrao]$ mv libtmp.so /tmp/
[stevenrao]$ g++ -o demo -L/tmp -ltmp main.cpp
[stevenrao]$ ./demo
./demo: error while loading shared libraries: libtmp.so: cannot open shared object file: No such file or directory
[stevenrao]$ ldd demo
linux-vdso.so.1 =>  (0x00007fff7fdc1000)
        libtmp.so => not found
   这个错误是最常见的错误了。运行程序的时候找不到依赖的so。一般人使用方法是修改LD_LIBRARY_PATH这个环境变量
   export LD_LIBRARY_PATH=/tmp
[stevenrao]$ ./demo
test
   这样就OK了, 不过这样export 只对当前shell有效,当另开一个shell时候,又要重新设置。可以把export LD_LIBRARY_PATH=/tmp 语句写到 ~/.bashrc中,这样就对当前用户有效了,写到/etc/bashrc中就对所有用户有效了。
   前面链接时候使用 -L/tmp/ -ltmp 是一种设置相对路径方法,还有一种绝对路径链接方法
[stevenrao]$ g++ -o demo  /tmp/libtmp.so main.cpp
[stevenrao]$ ./demo
  test
[stevenrao]$ ldd demo
        linux-vdso.so.1 =>  (0x00007fff083ff000)
        /tmp/libtmp.so (0x00007f53ed30f000) 
   绝对路径虽然申请设置环境变量步骤,但是缺陷也是致命的,这个so必须放在绝对路径下,不能放到其他地方,这样给部署带来很大麻烦。所以应该禁止使用绝对路径链接so。
   搜索路径分两种,一种是链接时候的搜索路径,一种是运行时期的搜索路径。像前面提到的 -L/tmp/ 是属于链接时期的搜索路径,即给ld程序提供的编译链接时候寻找动态库路径;而 LD_LIBRARY_PATH则既属于链接期搜索路径,又属于运行时期的搜索路径。
   这里需要介绍链-rpath链接选项,它是指定运行时候都使用的搜索路径。聪明的同学马上就想到,运行时搜索路径,那它记录在哪儿呢。也像. LD_LIBRARY_PATH那样,每部署一台机器就需要配一下吗。呵呵,不需要..,因为它已经被硬编码到可执行文件内部了。看看下面演示
[stevenrao] $ g++ -o demo -L /tmp/ -ltmp main.cpp
[stevenrao] $ ./demo
./demo: error while loading shared libraries: libtmp.so: cannot open shared object file: No such file or directory
[stevenrao] $ g++ -o demo -Wl,-rpath /tmp/ -L/tmp/ -ltmp main.cpp
[stevenrao] $ ./demo
test
[stevenrao] $ readelf -d demo
Dynamic section at offset 0xc58 contains 26 entries:
  Tag        Type                         Name/Value
0x0000000000000001 (NEEDED)             Shared library: [libtmp.so]
0x0000000000000001 (NEEDED)             Shared library: [libstdc++.so.6]
0x0000000000000001 (NEEDED)             Shared library: [libm.so.6]
0x0000000000000001 (NEEDED)             Shared library: [libgcc_s.so.1]
0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]
0x000000000000000f (RPATH)              Library rpath: [/tmp/]
0x000000000000001d (RUNPATH)            Library runpath: [/tmp/]
   看看是吧,编译到elf文件内部了,路径和程序深深的耦合到一起
   还有一个类似于-path,叫LD_RUN_PATH环境变量, 它也是把路径编译进可执行文件内,不同的是它只设置RPATH。
[stevenrao] $ g++ -o demo -L /tmp/  -ltmp main.cpp
[stevenrao] $ readelf -d demo
Dynamic section at offset 0xb98 contains 25 entries:
  Tag        Type                         Name/Value
0x0000000000000001 (NEEDED)             Shared library: [libtmp.so]
....
0x000000000000000f (RPATH)              Library rpath: [/tmp/]
  另外还可以通过配置/etc/ld.so.conf,在其中加入一行
  /tmp/
  这个配置项也是只对运行期有效,并且是全局用户都生效,需要root权限修改,修改完后需要使用命令ldconfig 将 /etc/ld.so.conf 加载到ld.so.cache中,避免重启系统就可以立即生效。
  除了前面介绍的那些搜索路径外,还有缺省搜索路径/usr/lib/ /lib/ 目录,可以通过-z nodefaultlib编译选项禁止搜索缺省路径。
  [stevenrao] $ g++ -o demo -z nodefaultlib  -L/tmp -ltmp main.cpp
  [stevenrao] $  ./demo
   ./demo: error while loading shared libraries: libstdc++.so.6: cannot open shared object file
  这么多搜索路径,他们有个先后顺序如下
  1、RUMPATH 优先级最高
  2、RPATH   其次
  3、LD_LIBRARY_PATH
  4、/etc/ld.so.cache
  5、/usr/lib/ /lib/
  查看一个程序搜索其各个动态库另一个简单的办法是使用 LD_DEBUG这个环境变量;
  [stevenrao] $ export LD_DEBUG=libs
  [stevenrao] $ ./demo

注:本文转载自http://blog.csdn.net/suwei19870312/article/details/20045281

你可能感兴趣的:(linux)