【POJ1442】【Treap】Black Box

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions: 

ADD (x): put element x into Black Box; 
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending. 

Let us examine a possible sequence of 11 transactions: 

Example 1 

N Transaction i Black Box contents after transaction Answer
(elements are arranged by non-descending)
1 ADD(3) 0 3
2 GET 1 3 3
3 ADD(1) 1 1, 3
4 GET 2 1, 3 3
5 ADD(-4) 2 -4, 1, 3
6 ADD(2) 2 -4, 1, 2, 3
7 ADD(8) 2 -4, 1, 2, 3, 8
8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
9 GET 3 -1000, -4, 1, 2, 3, 8 1
10 GET 4 -1000, -4, 1, 2, 3, 8 2
11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type. 


Let us describe the sequence of transactions by two integer arrays: 


1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence. 


Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4

3 1 -4 2 8 -1000 2

1 2 6 6

Sample Output

3

3

1

2

Source

【分析】

练下手而已,没什么。

  1 #include <iostream>

  2 #include <cstdio>

  3 #include <algorithm>

  4 #include <cstring>

  5 #include <vector>

  6 #include <utility>

  7 #include <iomanip>

  8 #include <string>

  9 #include <cmath>

 10 #include <queue>

 11 #include <assert.h>

 12 #include <map>

 13 

 14 const int N = 30000 + 10;

 15 const int SIZE = 250;//块状链表的大小 

 16 const int M = 50000 + 5;

 17 using namespace std;

 18 struct TREAP{

 19        struct Node{

 20               int fix, size;

 21               int val;

 22               Node *ch[2];

 23        }mem[30000 + 10], *root;

 24        int tot;

 25        //大随机 

 26        int BIG_RAND(){return (rand() * RAND_MAX + rand());}

 27        Node *NEW(){

 28             Node *p = &mem[tot++];

 29             p->fix = BIG_RAND();

 30             p->val = 0;

 31             p->size = 1;

 32             p->ch[0] = p->ch[1] = NULL;

 33             return p;

 34        }

 35        //将t的d节点换到t 

 36        void rotate(Node *&t, int d){

 37             Node *p = t->ch[d];

 38             t->ch[d] = p->ch[d ^ 1];

 39             p->ch[d ^ 1] = t;

 40             t->size = 1;

 41             if (t->ch[0] != NULL) t->size += t->ch[0]->size;

 42             if (t->ch[1] != NULL) t->size += t->ch[1]->size; 

 43             t = p;

 44             t->size = 1;

 45             if (t->ch[0] != NULL) t->size += t->ch[0]->size;

 46             if (t->ch[1] != NULL) t->size += t->ch[1]->size; 

 47             return; 

 48        }

 49        void insert(Node *&t, int val){

 50             //插入 

 51             if (t == NULL){

 52                t = NEW();

 53                t->val = val;

 54                return; 

 55             }

 56             //大的在右边,小的在左边 

 57             int dir = (val >= t->val);

 58             insert(t->ch[dir], val);

 59             //维护最大堆的性质 

 60             if (t->ch[dir]->fix > t->fix) rotate(t, dir);

 61             t->size = 1;

 62             if (t->ch[0] != NULL) t->size += t->ch[0]->size;

 63             if (t->ch[1] != NULL) t->size += t->ch[1]->size; 

 64        }

 65        //在t的子树中找到第k小的值 

 66        int find(Node *t, int k){

 67            if (t->size == 1) return t->val;

 68            int l = 0;//t的左子树中有多少值 

 69            if (t->ch[0] != NULL) l += t->ch[0]->size;

 70            if (k == (l + 1)) return t->val;

 71            if (k <= l) return find(t->ch[0], k);

 72            else return find(t->ch[1], k - (l + 1));

 73        }

 74 }treap; 

 75 typedef long long ll;

 76 int have[N];//have为1则在这个地方GET 

 77 int data[N], m, n;

 78 

 79 void init(){

 80      treap.root = NULL;

 81      treap.tot = 0; 

 82      memset(have, 0, sizeof(have));

 83      scanf("%d%d", &m, &n);

 84      for (int i = 1; i <= m; i++) scanf("%d", &data[i]);

 85      for (int i = 1; i <= n; i++){

 86          int x;

 87          scanf("%d", &x);

 88          have[x]++;

 89      }

 90 }

 91 void work(){

 92      int pos = 0;//代表要获得的位置 

 93      for (int i = 1; i <= m; i++){

 94          treap.insert(treap.root, data[i]); 

 95          //printf("%d", treap.root->size);

 96          while (have[i]){

 97             pos++;

 98             printf("%d\n", treap.find(treap.root, pos));

 99             have[i]--;

100          }

101      }

102     

103 }

104 

105 int main(){

106     int T;

107     #ifdef LOCAL

108     freopen("data.txt", "r", stdin);

109     freopen("out.txt", "w", stdout);

110     #endif

111     init();

112     work();

113     return 0;

114 }
View Code

 

你可能感兴趣的:(poj)