隐马尔科夫模型-前向算法详细实例(秒杀目前网络上所有资料)-新手必备!

HMM 有三个矩阵   初始状态矩阵  状态转移概率矩阵  隐态到显态转移概率矩阵    两个状态集合: 隐态(S1,S2,S3)  两个观测态(A,B)


上图的意思是    三个状态互相转移的概率 分别为:(1,2,3分别指S1,S2,S3)

1->1   P=0.4    1->2   P=0.6   2->2  P=0.8    2->3   P=0.2    3->3  P=1.0 


隐态对应的显示态概率为

S1     是A的概率为0.7   是B的概率为0.3

S2     是A的概率为0.4   是B的概率为0.6

S3     是A的概率为0.8   是B的概率为0.2




 

当然初始概率矩阵π=(1,0,0),即开始处于状态1。按照上面的公式理论,我们的递推依次解出at(i)。解法如下:

     t=1时:

   

     t=2时:

   

第一个计算式的解释:0.7是初始状态  0.4 是 (a11)S1->S1的概率,0.3是S1对应B的概率   (b1(B))

        第二个计算式的解释:0.7是初始状态  0.6 是 (a12)S1->S2的概率,0.3是S2对应B的概率   (b2(B))

     t=3时:

  隐马尔科夫模型-前向算法详细实例(秒杀目前网络上所有资料)-新手必备!_第1张图片

     t=4时:

 隐马尔科夫模型-前向算法详细实例(秒杀目前网络上所有资料)-新手必备!_第2张图片

隐马尔科夫模型-前向算法详细实例(秒杀目前网络上所有资料)-新手必备!_第3张图片

更正:最终结果图示 有问题     q1 q2 是正确的  , 从q3 开始  0.4*0.3  应该改为  0.4*0.7    




如果还有问题,可以联系我,共同讨论哈

 

你可能感兴趣的:(算法)