引用
背景
很久以前,迷宫里住着一个恶魔。一天,我们伟大的英雄Jacky无意中踏入了这个迷宫。不幸的是,他被困在这个迷
宫当中了。恶魔在迷宫中召唤出了许多怪物,想要阻止Jacky逃脱。在迷宫中,Jacky遇到一个一位巫师。他给了
Jacky迷宫的地图,并告诉他迷宫的入口很快会关闭。Jacky必须以非常快的速度到达入口,并且有足够的力气推开挡
在入口的岩石。于是,Jacky带着地图一路向着出口走去……
问题
给出Jacky和各怪物的能量, 攻击力, 防御力,和迷宫的地图,请你计算一下 能量/耗时 的最大值。
当Jacky走到有怪物的地方时,Jacky会先进行攻击,然后怪物攻击,然后Jacky……当一方的能量小于等于0时攻击停止
,并且小于等于0的一方死亡。攻击时,每次对方损耗的能量为己方的攻击力减去对方的防御力。
当Jacky走到标有‘A’,‘B’,‘C’的地方时,Jacky的相应属性会得到增加。
对应关系如下:
[A] 能量 + P
[B] 攻击力 + Q
[C] 防御力 + R
如果耗时超过100,那么门将永远也打不开了,我们的Jacky也就永远的困在了这个暗无天日的迷宫之中……
输入
标准输入包含多组数据。
每组数据的第一行有六个整数W (1 <= W <= 20), H (1 <= H <= 20), P (1 <= P <= 10), Q (1<= Q <= 10), R (1
<= R <= 10), M (0 <= M <= 5). 迷宫是由一个W*H的矩形区域构成。M表示怪物的数量。
Jacky每个单位时间可以移动到相邻的4个格中,当然,必须得保证目标格在矩形区域中。默认的起始时间是0。
与怪物战斗不会花费额外的时间。
其后H行每行严格包含W个字符。用如下的各字符表示这个迷宫的地图:
[#]表示一堵墙(Jacky是不会穿墙术的)
[.] Marks an empty space, into which you can move.表示一块空地。
[S]表示Jacky的初始位置。
[E]表示迷宫的入口。
[0]数字表示各怪物的标号。
[A]表示属性增加地点。(使用次数仅限于一次)
其后一行有三个整数,表示Jacky的能量,攻击力,和防御力。
其后M行,每行有四个整数,表示怪物的编号,和这个怪物的各属性。
输出
对于每组输入数据,输出 能量/耗时 的最大值,并保留4位小数。如果Jacky不能到达出口,输出“impossible”。数
据之间无空行。
样例输入
6 17 7 5 4 3
#################
##E......#......#
#A#....#.0.##.#B#
#1###########2###
#.S............C#
#################
100 59 10
0 23 48 0
1 65 41 0
2 20 27 0
样例输出
3.7037
思路:
1:不是寻找最佳路径,只是模拟寻找路径过程。
2:杀死的怪物不能重生
3:简单起见,输入和输出没有按题目的要求。 输出的是Jacky探寻的路径和出来后的属性
###########################################
$MAZE_DATA = Array.[](['#','#','#','#','#','#','#','#','#','#','#','#','#','#','#','#','#'],
['#','#','E','.','.','.','.','.','.','#','.','.','.','.','.','.','#'],
['#','A','#','.','.','.','.','#','.','0','.','#','#','.','#','B','#'],
['#','1','#','#','#','#','#','#','#','#','#','#','#','2','#','#','#'],
['#','.','S','.','.','.','.','.','.','.','.','.','.','.','.','C','#'],
['#','#','#','#','#','#','#','#','#','#','#','#','#','#','#','#','#'])
$MAZE_DATA_WIDTH = 17
$MAZE_DATA_HEIGHT = 6
$FACTOR_P = 7
$FACTOR_Q = 5
$FACTOR_R = 4
$FACTOR_M = 3
$JACKY_DATA = Array.[](100,59,10)
$OGRE_DATA = Array.[]([23,48,0],[65,41,0],[20,27,0])
$TOTAL_TIME_LIMIT = 100
$TIME_UNIT = 4
##########################################
$GRID_WALL = '#'
$GRID_EMPTY = '.'
$GRID_START = 'S'
$GRID_END = 'E'
$GRID_ATTRIBUTE = /[A-Z]/
$GRID_OGER = /\d/
$GRID_PASS = '~'
###########################################
$ALL_PATHES = Array.[]()
$HAVE_OUT = false
###########################################
def walkToGrid(x,y,pathStack,detectedGrids)
grid = gridData(x,y)
return false if !grid || grid == $GRID_WALL || hasWalkTo(x,y,detectedGrids)
#p "Walk to "+x.to_s+","+y.to_s+" "
detectedGrids.push([x,y])
pathStack.push([x,y]) if !notWays(x,y,detectedGrids)
if grid == $GRID_END
pathStack.push([x,y])
isOK = true
elsif grid =~ $GRID_ATTRIBUTE #meet something to eat ,become more strong
p "Meet something to eat "
$JACKY_DATA[0] += $FACTOR_P
$JACKY_DATA[1] += $FACTOR_Q
$JACKY_DATA[2] += $FACTOR_R
setGridData(x,y,$GRID_EMPTY)
elsif grid =~ $GRID_OGER # meet oger and fright
ogerIndex = grid.to_i
while true
$OGRE_DATA[ogerIndex][0] -= $JACKY_DATA[1]-$OGRE_DATA[ogerIndex][2]#jacky attack first
break if $OGRE_DATA[ogerIndex][0]<=0
$JACKY_DATA[0] -= $OGRE_DATA[ogerIndex][1] - $JACKY_DATA[2]#oger attack
break if $JACKY_DATA[0]<=0
end
if $JACKY_DATA[0]<=0
p "Jacky Dead !"
exit
else
p "Jacky kill oger [" + grid +"]"
setGridData(x,y,$GRID_EMPTY) # clear the oger
end
end
if !isOK
checkPreStep(pathStack,detectedGrids)
#check time
if detectedGrids.size/$TIME_UNIT >= $TOTAL_TIME_LIMIT
p detectedGrids
p "Out of Time,man !"
exit
end
else
tmp = pathStack.clone
#save the success case to cache
$ALL_PATHES << tmp
p "Find the outlet"
$HAVE_OUT = true
return true
end
# The walking strategy is very important, but in here jacky could not to pick the best way because he doesn't know how to choice
walkToGrid(x+1,y,pathStack,detectedGrids) if !$HAVE_OUT
walkToGrid(x-1,y,pathStack,detectedGrids) if !$HAVE_OUT
walkToGrid(x,y+1,pathStack,detectedGrids) if !$HAVE_OUT
walkToGrid(x,y-1,pathStack,detectedGrids) if !$HAVE_OUT
end
def gridData(x,y)
return nil if !validateXY(x,y)
return $MAZE_DATA[y][x]
end
def setGridData(x,y,data)
$MAZE_DATA[y][x]=data
end
def validateXY(x,y)
return (x < $MAZE_DATA_WIDTH) && (x>=0) && (y<$MAZE_DATA_HEIGHT) && (y >=0)
end
# whether this position has any pathes to walk along
def notWays(x,y,detectedGrids)
nextXGrid = gridData(x+1,y)
preXGrid = gridData(x-1,y)
nextYGrid = gridData(x,y+1)
preYGrid = gridData(x,y-1)
if !nextXGrid&&!preXGrid&&!nextYGrid&&!preYGrid
return true
end
return (nextXGrid==$GRID_WALL || ((hasWalkTo(x+1,y,detectedGrids))&&!hasSuccesPathToGrid(x+1,y)))&&(preXGrid==$GRID_WALL || ((hasWalkTo(x-1,y,detectedGrids))&&!hasSuccesPathToGrid(x-1,y)))&&(nextYGrid==$GRID_WALL || (hasWalkTo(x,y+1,detectedGrids)&&!hasSuccesPathToGrid(x,y+1)))&&(preYGrid==$GRID_WALL || ((hasWalkTo(x,y-1,detectedGrids))&&!hasSuccesPathToGrid(x,y-1)))
end
def hasSuccesPathToGrid(x,y)
$ALL_PATHES.each{|path|
path.each{ |grid|
return true if grid[0]==x && grid[1]==y
}
}
return false
end
def hasWalkTo(x,y,detectedGrids)
return false if !validateXY(x,y)
detectedGrids.each{|grid|
return true if grid[0]==x && grid[1] ==y
}
return false;
end
#check whether previous step is effective
def checkPreStep(pathStack,detectedGrids)
return if pathStack.size<1
ok = false
while !ok
preStep = pathStack.at(pathStack.size-1)
if notWays(preStep[0],preStep[1],detectedGrids)
detectedGrids << pathStack.pop
else
ok=true
end
end
preStep = pathStack.at(pathStack.size-1)
lastDetectedGrid = detectedGrids.at(detectedGrids.size-1)
detectedGrids.push(preStep) if (lastDetectedGrid[0] != preStep[0] || lastDetectedGrid[1]!=preStep[1])
end
#get the start position and the end position
y=0
$MAZE_DATA.each{|y_data|
x=0
y_data.each{|x_data|
if x_data==$GRID_START
$START_X = x
$START_Y = y
elsif x_data==$GRID_END
$END_X = x
$END_Y = y
end
x += 1
}
break if $START_X&&$START_Y&&$END_X&&$END_Y
y += 1
}
$detectedGrids = Array.new
walkToGrid($START_X,$START_Y,Array.[](),$detectedGrids)
p "----------- Walking Track-------------------"
p $detectedGrids
p $JACKY_DATA