数仓实践:如何优雅的设计DWS层?

对于数仓的分层,大家最耳熟能详的就是基于OneData方法论的三层数仓划分,分别是:数据引入层(ODS,Operational Data Store)、数据公共层(CDM,Common Dimenions Model)和数据应用层(ADS,Application Data Store)。

当然,涉及到每一层具体该怎么建模,可能大家都有自己的理解。数据建模无疑是重中之重,如果我们把指标比作树上的果实,那么模型就好比是大树的躯干,想让果实结得好,必须让树干变得粗壮。

我们先来回想下,构建数据中台的初衷是什么:

  • 没有可以复用的数据,
  • 大家不得不使用原始数据进行清洗、加工和计算指标…

这根源就在于数据模型的无法复用,数据开发都是烟囱式的。所以要解决这个问题,就要搞清楚健壮的数据模型该如何设计。

常见的数仓分层设计思路

下图是数仓分层的逻辑架构图,大家不妨回忆一下数据模型的分层设计:

你可能感兴趣的:(#,----,数仓理论,数仓实践,大数据,数据仓库,维度建模)