poj1050(nyoj104 zoj1074)dp问题

To the Max
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 39913   Accepted: 21099

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0 9 2 -6 2

-4 1 -4  1 -1



8  0 -2

Sample Output

15

Source

这是hdu 1003的拓展,知道了在一维数组中如何求最大连续子段和,那么这题就是扩展到二维数组中,让我们求出子矩阵最大的和,我们可以这样考虑,我们把同行不同列(或者同列不同行)的加起来,比如i行,j行,i,j两行之间的数字组成了一个矩阵,我们把i行到j行之间同列的数组元素加起来按照列号组成一个一维数组,这样我们只需要利用最大子段和的知识找出这个数组的最大连续和,这个和就是我们要求的那个子矩阵最大和! 可以说, i和j行定义了子矩阵高度,一维数组最大子段和连续的长度定义了子矩阵的宽度,OK,代码。
 1 #include<iostream>

 2 #include<cstdio>

 3 #include<cstring>

 4 using namespace std;

 5 

 6 int temp[101],n;

 7 int cal()  //

 8 {

 9     int Max = temp[0];

10     int sum = temp[0];

11     for(int i =1 ;i<n;i++)

12     {

13         if(sum+temp[i]<temp[i])

14             sum = temp[i];

15         else

16             sum+=temp[i];

17         if(Max<sum)

18             Max = sum;

19     }

20     return Max;

21 }

22 

23 int main()

24 {

25     while(scanf("%d",&n)!=EOF)

26     {

27         int a[101][101];

28         for(int i = 0;i<n;i++)

29             for(int j =0 ;j<n;j++)

30                 scanf("%d",&a[i][j]);

31         int Max = 0;

32         for(int i =0 ;i< n;i++)  //i是起始行

33         {

34             for(int j =i ;j<n;j++)    //j是终止行

35             {

36                 memset(temp,0,sizeof(temp));

37                 for(int m = 0;m<n;m++)   //固定列,注意是行在变

38                 {

39                     for(int k =i ;k<=j;k++)  //累加i起始行,j终止行中间的同列的数据

40                         temp[m]+=a[k][m];

41                 }

42                 int MaxTemp = cal();

43                 if(MaxTemp>Max)

44                     Max = MaxTemp;

45             }

46 

47         }

48         printf("%d\n",Max);

49     }

50     return 0;

51 }

 事实证明我蠢了,后来看到nyoj这题的最优程序解答,在处理第i行到j行同列相加上面处理的很好,利用输入时候进行累加,然后做减法,直接减掉了一层循环

nyoj 的版本

 1  

 2 

 3 #include<iostream>

 4 #include<cstring>

 5 using namespace std;

 6 #define N 110

 7 int a[N][N];

 8 int b[N];

 9 int main()

10 {

11     int n,r,c;

12     cin>>n;

13     while(n--)

14     {

15         cin>>r>>c;

16         for(int i=1;i<=r;++i)        

17             for(int j=1;j<=c;++j)

18             {

19                 cin>>a[i][j];

20                 a[i][j]+=a[i-1][j];

21             }

22         int max=a[1][1];

23         for(int i=0;i<=r-1;++i)

24             for(int j=i+1;j<=r;++j)

25             {

26                 memset(b,0,sizeof(b));

27                 for(int k=1;k<=c;++k)

28                 {

29                     if(b[k-1]>=0)

30                         b[k]=b[k-1]+a[j][k]-a[i][k];

31                     else

32                         b[k]=a[j][k]-a[i][k];

33                     if(max<b[k])

34                         max=b[k];

35                 }

36             }

37         cout<<max<<endl;

38     }

39 }                        

还有一种没有用这种求和的方法,但是是先求第一行最大子段和,再求第一行跟第二行合起来的最大子段和,,再求第一到第三合起来的最大子段和以此类推,直到求出整个矩阵的合起来的最大子段和,最后就是我们需要的解 。

 

 1 #include<iostream>

 2 #include<cstdio>

 3 #include<cstring>

 4 using namespace std;

 5 

 6 int temp[101],n;

 7 int cal()  //最大子段和

 8 {

 9     int Max = temp[0];

10     int sum = temp[0];

11     for(int i =1 ;i<n;i++)

12     {

13         if(sum+temp[i]<temp[i])

14             sum = temp[i];

15         else

16             sum+=temp[i];

17         if(Max<sum)

18             Max = sum;

19     }

20     return Max;

21 }

22 

23 int main()

24 {

25     while(scanf("%d",&n)!=EOF)

26     {

27         int a[101][101];

28         for(int i = 0;i<n;i++)

29             for(int j =0 ;j<n;j++)

30                 scanf("%d",&a[i][j]);

31         int Max = 0;

32         for(int i =0 ;i< n;i++)

33         {

34             memset(temp,0,sizeof(temp));

35             for(int j =i ;j<n;j++)

36             {

37                 for(int k =0 ;k<n;k++)

38                     temp[k]+=a[j][k];

39                 int t = cal();

40                 if(t>Max)

41                     Max =t;

42             }

43 

44         }

45         printf("%d\n",Max);

46     }

47     return 0;

48 }

 

 

 

你可能感兴趣的:(poj)