题意:
给你一些疾病 DNA 片段,求长度为 n 的 DNA 串中不包含这些片段的串的数量。
思路:
1. trie图中其实是一个有限状态机,每个节点是一个状态,可以相互转移。
2. 最后的结果是 0 到 非疾病节点 x。中间可能经过其它节点,所以这相当于是一个有向图, 0 经过 n 步到达 x 的可能路线。
3. 最后问题转化为:生成有向图,n太大则使用矩阵乘法减轻时间复杂度。
注意的问题:
1. 某DNA片段是其他片段的字串问题,这时候fail指针的作用就出来了,在代码中只需要设置下value的值就行了
2. 二分法递归求乘法的时候很容易爆栈,借鉴了别人的非递归写法,这样栈的压力减轻了不少。
参考的博客:
http://blog.henix.info/blog/poj-2778-aho-corasick-dp.html
http://www.matrix67.com/blog/archives/276
http://blog.csdn.net/vsooda/article/details/8510571
#include <iostream>
#include <deque>
using namespace std;
const int MAX_SIZE = 10 * 10 + 1;
const int CHILD_NUM = 4;
const int MOD = 100000;
class CMatrix
{
public:
int size;
long long int elem[MAX_SIZE][MAX_SIZE];
CMatrix() { memset(elem, 0, sizeof(elem)); }
void SetSize(int n)
{
size = n;
}
CMatrix operator = (const CMatrix& other)
{
SetSize(other.size);
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
elem[i][j] = other.elem[i][j];
return *this;
}
CMatrix operator * (const CMatrix& other)
{
CMatrix temp;
temp.SetSize(size);
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
for (int k = 0; k < size; ++k)
{
temp.elem[i][j] += elem[i][k] * other.elem[k][j];
if (temp.elem[i][j] >= MOD)
temp.elem[i][j] %= MOD;
}
return temp;
}
void Power(int exp)
{
CMatrix E;
E.SetSize(size);
for (int i = 0; i < E.size; ++i)
E.elem[i][i] = 1;
while (exp)
{
if (exp & 0x01)
E = E * (*this);
*this = (*this) * (*this);
exp >>= 1;
}
*this = E;
}
};
classCAutomaton
{
private:
int size;
int trie[MAX_SIZE][CHILD_NUM];
int fail[MAX_SIZE];
int value[MAX_SIZE];
int table[128];
public:
void Initilize()
{
table['A'] = 0;
table['C'] = 1;
table['T'] = 2;
table['G'] = 3;
}
void Reset()
{
size = 1;
memset(trie[0], 0, sizeof(trie[0]));
memset(fail, 0, sizeof(fail));
memset(value, 0, sizeof(value));
}
void Insert(char* word)
{
int p = 0;
for (int i = 0; word[i]; ++i)
{
int m = table[word[i]];
if (!trie[p][m])
{
memset(trie[size], 0, sizeof(trie[0]));
trie[p][m] = size++;
}
p = trie[p][m];
}
value[p] = 1;
}
void Construct()
{
deque<int> deq;
for (int i = 0; i < CHILD_NUM; ++i)
if (trie[0][i])
{
fail[trie[0][i]] = 0;
deq.push_back(trie[0][i]);
}
while (!deq.empty())
{
int u = deq.front();
deq.pop_front();
for (int i = 0; i < CHILD_NUM; ++i)
{
int& v = trie[u][i];
if (v)
{
fail[v] = trie[fail[u]][i];
deq.push_back(v);
value[v] |= value[fail[v]];
}
else
v = trie[fail[u]][i];
}
}
}
CMatrix Work()
{
CMatrix mat;
mat.SetSize(size);
for (int u = 0; u < size; ++u)
{
if (value[u])
continue;
for (int i = 0; i < CHILD_NUM; ++i)
{
int v = trie[u][i];
if (value[v])
continue;
mat.elem[u][v] += 1;
}
}
return mat;
}
};
CAutomaton AC;
int main()
{
int m, n;
char word[20];
scanf("%d %d", &m, &n);
AC.Initilize();
AC.Reset();
for (int i = 0; i < m; ++i)
{
scanf("%s", word);
AC.Insert(word);
}
AC.Construct();
CMatrix mat = AC.Work();
mat.Power(n);
long long int sum = 0;
for (int i = 0; i < mat.size; ++i)
sum += mat.elem[0][i];
printf("%lld\n", sum % MOD);
return 0;
}