- python版本更新历史_Python3 是否已经完成了取代 Python2 的历史进程?
wongzo
python版本更新历史
最新情况:搞web开发之类的还是用py2的多,但搞数据科学现在基本都py3了,之前不推荐py3是因为它不支持一些3D绘图库,但现在一些机器学习库刚出来的新版有的只支持py3,所以搞数据的还是用py3吧。--------------------------------照目前的情形看,哪怕python3退出历史舞台了python2还会活的好好的!官方倒是想让py2早死早超生,然而天不遂人愿,1:由于p
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- 【神经网络】python实现神经网络(一)——数据集获取
师兄师兄怎么办
机器学习算法python神经网络python人工智能手写数字识别深度学习机器学习
一.概述在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代码实现将以“手写数字识别”为例子。二.测试训练数据集的获取首先我们需要通过官网获取到手写数字识别数据集,数据集一共分为四个部分,分别是训练集的图片(六万张)、训练集的标签、测试集的图片
- Deepseek r1回答:人工智能的本质是什么? 给人类社会带来的意义是什么? 相比于之前的互联网革命,这一轮的人工智能革命的特点和异同点有哪些?
强化学习曾小健
Deepseek原理与使用人工智能
嗯,用户问的是人工智能的本质、对社会的意义,以及和互联网革命的比较。首先得拆解这三个问题,逐个分析。用户可能对AI有一定了解,但想深入理解其核心和影响。可能需要从技术、社会、历史角度切入。先想AI的本质。本质是什么?是模拟人类智能,还是数据处理?可能需要提到机器学习、深度学习,尤其是神经网络。但本质可能更深层,比如自主决策、模式识别。还要区分弱AI和强AI,现在都是弱AI,专注于特定任务。然后是意
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶
凡人的AI工具箱
深度学习pytorch学习人工智能pythonAI编程
PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶在深度学习处理序列数据时,循环神经网络(RNN)家族的模型扮演着至关重要的角色。今天,我们将深入探讨循环神经网络的进阶内容,包括BiLSTM的工作机制、注意力机制的数学原理,以及Transformer编码层的实现。目录BiLSTM的双向信息流机制LSTM回顾BiLSTM架构解析时序特征融合策略BiLSTM实现与案例注意力机制原理
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》
人工智能深度学习
在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这一难题提供了全新的思路。从概念上讲,课程蒸馏体系借鉴了机器学习中知识蒸馏的思想,将复杂、庞大的知识体系进行提炼和压缩,使其能够更有效地被学习者吸收。而“三阶训练法”作为该体系的核心,通过精心设计
- Qwen1.5-7B-实现RAG应用详细步骤
大数据追光猿
大模型数据库AI编程语言模型人工智能深度学习
1.准备工作1.1安装依赖确保你的环境中安装了以下工具和库:Python:建议使用Python3.8或更高版本。PyTorch:用于运行深度学习模型。Transformers:HuggingFace提供的库,支持加载和运行预训练模型。FAISS:用于向量检索的高效库。GPTQ支持库:如auto-gptq或gptqmodel。安装命令运行以下命令安装所需的Python包:pipinstalltorc
- Opacus库快速上手!使用Opacus库在Mnist数据集实现差分隐私
还不秃顶的计科生
快捷操作编程技巧pycharm
第一部分:代码实现(1)基础配置python:3.8,opacus1.1.1,torch1.12.1pipinstallopacus==1.1.1具体实现方式是参考opacus官网以及(4)的参考文献。opacus官网为:GitHub-pytorch/opacus:使用差分隐私训练PyTorch模型(2)完整代码#-*-coding:utf-8-*-#Step1:导入必要的库和模块importto
- GitHub每日最火火火项目(3.7)
FutureUniant
github日推github人工智能计算机视觉音视频ai
ai-hedge-fund项目介绍:ai-hedge-fund是由virattt开发的项目,本质上是一个将人工智能技术应用于对冲基金领域的团队或平台。在金融市场中,对冲基金旨在通过各种策略获取超额收益,而人工智能具备强大的数据分析和预测能力,二者结合能为投资决策带来新的思路和方法。该项目可能运用机器学习、深度学习等人工智能算法,对大量的金融数据进行深入分析,包括股票、债券、期货等市场的历史价格、交
- 【AI-42】如何调整参数和超参
W Y
人工智能
在机器学习和深度学习中,参数和超参数是两个重要概念,以下是一些常见的参数和超参数及其作用:参数权重(Weight)解释:可以将权重想象成连接不同神经元之间的“桥梁”,其大小决定了一个神经元的输出对下一个神经元的影响程度。权重越大,说明前一个神经元对后一个神经元的影响就越大;权重越小,影响就越小。作用:在模型训练过程中,权重不断调整,使得模型能够学习到输入数据中的各种特征和模式,从而实现对数据的准确
- 使用Python和机器学习技术对高中物理题目进行分类的示例代码
max500600
python机器学习python分类
以下是一个使用Python和机器学习技术对高中物理题目进行分类的示例代码。我们将使用自然语言处理(NLP)技术处理题目的文本信息,并使用朴素贝叶斯分类器进行分类。步骤概述数据准备:准备包含高中物理题目的数据集,每个题目都有对应的类别标签。文本预处理:对题目文本进行清洗和特征提取。模型训练:使用训练数据训练分类模型。模型评估:使用测试数据评估模型的性能。预测:使用训练好的模型对新的物理题目进行分类。
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- 图像处理篇---opencv中的图像特征
Ronin-Lotus
图像处理篇深度学习篇图像处理opencv人工智能python
文章目录前言一、纹理特征:局部二值模式(LBP)1.LBP简介2.LBP计算步骤3.OpenCV实现4.优点5.缺点二、形状特征:Hu矩1.Hu矩简介2.Hu矩计算步骤3.OpenCV实现4.优点5.缺点三、其他可用于传统机器学习的特征1.颜色特征颜色直方图颜色矩2.边缘特征Canny边缘检测HOG(方向梯度直方图)3.关键点特征SIFTSURF4.纹理特征Haralick纹理特征5.几何特征轮廓
- 深度学习篇---Opencv中的机器学习和深度学习
Ronin-Lotus
深度学习篇图像处理篇深度学习opencv机器学习python
文章目录前言一、OpenCV中的机器学习1.概述2.使用步骤步骤1:准备数据步骤2:创建模型步骤3:训练模型步骤4:预测3.优点简单易用轻量级实时性4.缺点特征依赖性能有限二、OpenCV中的深度学习1.概述图像分类(如ResNet、MobileNet)目标检测(如YOLO、SSD)语义分割(如DeepLab)人脸检测(如OpenFace)2.使用步骤步骤1:加载模型步骤2:准备输入数据步骤3:推
- pytorch安装记录
cy010124
pytorch人工智能python
在conda中创建环境(condacreate-npytorch1python=3.12),接着进入pytorch1环境(condaactivatepytorch1)。使用官网命令安装pytorch,第一次安装显示python版本过高,torchaudio和torchvision不支持3.12,python3.10可以同时满足,于是准备换成3.10。删除环境,首先切换到base环境(condaac
- 光学超表面的人工智能
Luis Li 的猫猫
人工智能专区基础及拓展超表面设计人工智能机器学习算法
光学超表面,即能够控制光传播的平面人工介质,正在从实验室过渡到商业应用。这种转变需要先进的超结构和超表面设计,考虑可制造性并通过后处理算法提高光学性能。人工智能,尤其是机器学习的优化,为这些需求提供了解决方案。该文章系统地回顾了AI在三个关键领域的潜在影响:AI支持的超表面可制造性设计(DFM)、超越经典局部相位近似的设计以及AI赋能的计算后端。Introduction超表面是超材料的二维(2D)
- DeepSeek这么火,一文教你本地部署DeepSeek!
入职啦
pythonpythondeepseek部署持续部署AI人工智能
要说年假最火的是什么,DeepSeek绝对在话题榜上,公众号几乎都是关于他的,今天入职啦也来和大家聊一聊我们AI领域的新星–DeepSeek,顺便也教大家部署一套属于自己的本地搜索服务。为什么DeepSeek这么火?一、技术架构优势DeepSeek采用创新的混合模型架构,将传统机器学习与深度学习有机结合。这种架构既保留了传统方法的可解释性,又具备深度学习的强大表征能力。通过自适应学习机制,Deep
- python程序员工资高吗?
lmseo5hy
python培训python程序员
据统计数据显示,北京Python平均薪资为18860元,Python不同岗位薪资范围为:Python全栈开发工程师(10k-20K)、Python运维开发工程师(15k-20K)、Python高级开发工程师(15k-30K)、Python大数据工程师(15K-30K)、Python机器学习工程师(15k-30K)、Python架构师(20k-40k)等,相比于Java、PHP、C#等其他的编程语言
- #深度优化提示词模板:解锁DeepSeek R1终极潜力的系统方案
领码科技
AI应用技能篇低代码提示词优化DeepSeekR1AI交互设计智能对话系统
摘要本文提出针对DeepSeekR1大模型的深度提示词优化体系,基于认知心理学原理与机器学习特征构建四维优化框架。通过解析模型工作机制、设计结构化模板、实战案例验证及进阶调优策略,形成覆盖基础到高阶的完整优化方案。研究显示优化后的提示词模板可使任务准确率提升40%,响应相关性提高55%。方案兼具理论深度与实践价值,为开发者提供可落地的优化指南。关键词:提示词优化、DeepSeekR1、AI交互设计
- 【Java】已解决java.lang.NoClassDefFoundError异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- Python爬取58同城广州房源+可视化分析
R3eE9y2OeFcU40
感谢关注天善智能,走好数据之路↑↑↑欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。消失了一段时间,这段时间在CSDN阅读了不少关于Python爬虫的文章,也学习了秦璐老师
- 深度学习中N维数组的介绍
帅维维
深度学习深度学习人工智能
N维数组是机器学习和神经网络的主要数据结构。下面是N维数组的实例:0维数组(标量):通常表示一个类别。1维数组(向量):通常表示一个特征向量。二维数组(矩阵):通常表示一个样本--特征矩阵。三维矩阵:通常表示RGB图片(宽*高*通道)。四维矩阵:通常表示一个RGB图片批量(批量大小*宽*高*通道)。五维矩阵:通常表示一个视频批量(批量大小*时间*宽*高*通道)。
- 智能交通违章处理系统:AI赋能下的智慧交通解决方案
Echo_Wish
Python笔记Python算法人工智能
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- Win7安装新版本anaconda出现Failed to extract packages解决方案
爱编程的喵喵
Python基础课程pythonanacondawin7failedtoextra
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Win7安装新版本anaconda出
- 机器学习在地图制图学中的应用
地图模型炼丹师
机器学习人工智能
原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstractCSDN/2025/Machinelearningincartography.pdfatmain·keykeywu2048/CSDN·GitHub核心内容本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机器学习(尤其是深度学习)在制
- 机器学习大纲总结
excellent121
机器学习人工智能
一、概念1.人工智能人工智能包含机器学习,机器学习包含深度学习2.机器学习机器学习是实现人工智能的一种途径机器学习=传统机器学习+深度学习3.深度学习深度学习是由机器学习的一种方法发展而来4.发展三要素数据、算法、算力5.发展史5.1符号主义(20世纪50-70):专家系统占主导1950年:图灵设计国际象棋程序1962年:IBMArthurSamuel的跳棋程序战胜人类高手(人工智能第一次浪潮)5
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo