波士顿地区的房价是由诸多因素影响的。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,
因为房价是一个连续值,所以房价预测显然是一个回归任务。用最简单的线性回归模型解决这个问题,并用神经网络来实现这个模型。
假设房价和各影响因素之间能够用线性关系来描述:
y = ∑ j = 1 M x j w j + b y = {\sum_{j=1}^Mx_j w_j} + b y=j=1∑Mxjwj+b
模型的求解即是通过数据拟合出每个 w j w_j wj和 b b b。其中, w j w_j wj和 b b b分别表示该线性模型的权重和偏置。一维情况下, w j w_j wj 和 b b b 是直线的斜率和截距。
线性回归模型使用均方误差作为损失函数(Loss),用以衡量预测房价和真实房价的差异,公式如下:
M S E = 1 n ∑ i = 1 n ( Y i ^ − Y i ) 2 MSE = \frac{1}{n} \sum_{i=1}^n(\hat{Y_i} - {Y_i})^{2} MSE=n1i=1∑n(Yi^−Yi)2
思考:
为什么要以均方误差作为损失函数?即将模型在每个训练样本上的预测误差加和,来衡量整体样本的准确性。这是因为损失函数的设计不仅仅要考虑“合理性”,同样需要考虑“易解性”,这个问题在后面的内容中会详细阐述。
神经网络的标准结构中每个神经元由加权和与非线性变换构成,然后将多个神经元分层的摆放并连接形成神经网络。线性回归模型可以认为是神经网络模型的一种极简特例,是一个只有加权和、没有非线性变换的神经元(无需形成网络)
深度学习不仅实现了模型的端到端学习,还推动了人工智能进入工业大生产阶段,产生了标准化、自动化和模块化的通用框架。不同场景的深度学习模型具备一定的通用性,五个步骤即可完成模型的构建和训练,如 图3 所示。
正是由于深度学习的建模和训练的过程存在通用性,在构建不同的模型时,只有模型三要素不同,其它步骤基本一致,深度学习框架才有用武之地。
数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装load data函数。数据预处理后,才能被模型调用。
通过如下代码读入数据,了解下波士顿房价的数据集结构,数据存放在本地目录下housing.data文件中。
# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
data
### 数据形状变换
由于读入的原始数据是1维的,所有数据都连在一起。因此需要我们将数据的形状进行变换,形成一个2维的矩阵,每行为一个数据样本(14个值),每个数据样本包含13个X(影响房价的特征)和一个Y(该类型房屋的均价)。
```python
# 读入之后的数据被转化成1维array,其中array的第0-13项是第一条数据,第14-27项是第二条数据,以此类推....
# 这里对原始数据做reshape,变成N x 14的形式
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 查看数据
x = data[0]
print(x.shape)
print(x)
在本案例中,我们将80%的数据用作训练集,20%用作测试集,实现代码如下。通过打印训练集的形状,可以发现共有404个样本,每个样本含有13个特征和1个预测值。
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
training_data.shape
对每个特征进行归一化处理,使得每个特征的取值缩放到0~1之间。这样做有两个好处:一是模型训练更高效;二是特征前的权重大小可以代表该变量对预测结果的贡献度(因为每个特征值本身的范围相同)。
# 计算train数据集的最大值,最小值,平均值
maximums, minimums, avgs = \
training_data.max(axis=0), \
training_data.min(axis=0), \
training_data.sum(axis=0) / training_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
#print(maximums[i], minimums[i], avgs[i])
data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
将上述几个数据处理操作封装成load data函数,以便下一步模型的调用,实现方法如下。
def load_data():
# 从文件导入数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
# 将原始数据进行Reshape,变成[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 将原数据集拆分成训练集和测试集
# 这里使用80%的数据做训练,20%的数据做测试
# 测试集和训练集必须是没有交集的
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
# 计算训练集的最大值,最小值,平均值
maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
training_data.sum(axis=0) / training_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
#print(maximums[i], minimums[i], avgs[i])
data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
# 训练集和测试集的划分比例
training_data = data[:offset]
test_data = data[offset:]
return training_data, test_data
# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]
# 查看数据
print(x[0])
print(y[0])
模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。
如果将输入特征和输出预测值均以向量表示,输入特征 x x x有13个分量, y y y有1个分量,那么参数权重的形状(shape)是 13 × 1 13\times1 13×1。假设我们以如下任意数字赋值参数做初始化:
w = [ 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , − 0.1 , − 0.2 , − 0.3 , − 0.4 , 0.0 ] w=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0] w=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,−0.1,−0.2,−0.3,−0.4,0.0]
w = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0]
w = np.array(w).reshape([13, 1])
取出第1条样本数据,观察样本的特征向量与参数向量相乘的结果。
x1=x[0]
t = np.dot(x1, w)
print(t)
完整的线性回归公式,还需要初始化偏移量 b b b,同样随意赋初值-0.2。那么,线性回归模型的完整输出是 z = t + b z=t+b z=t+b,这个从特征和参数计算输出值的过程称为“前向计算”。
b = -0.2
z = t + b
print(z)
[-0.16604403]
将上述计算预测输出的过程以“类和对象”的方式来描述,类成员变量有参数 w w w和 b b b。通过写一个forward函数(代表“前向计算”)完成上述从特征和参数到输出预测值的计算过程,代码如下所示。
class Network(object):
def __init__(self, num_of_weights):
# 随机产生w的初始值
# 为了保持程序每次运行结果的一致性,
# 此处设置固定的随机数种子
np.random.seed(0)
self.w = np.random.randn(num_of_weights, 1)
self.b = 0.
def forward(self, x):
z = np.dot(x, self.w) + self.b
return z
基于Network类的定义,模型的计算过程如下所示。
net = Network(13)
x1 = x[0]
y1 = y[0]
z = net.forward(x1)
print(z)
[-0.63182506]
模型设计完成后,需要通过训练配置寻找模型的最优值,即通过损失函数来衡量模型的好坏。训练配置也是深度学习模型关键要素之一。
通过模型计算 x 1 x_1 x1表示的影响因素所对应的房价应该是 z z z, 但实际数据告诉我们房价是 y y y。这时我们需要有某种指标来衡量预测值 z z z跟真实值 y y y之间的差距。对于回归问题,最常采用的衡量方法是使用均方误差作为评价模型好坏的指标,具体定义如下:
L o s s = ( y − z ) 2 Loss = (y - z)^2 Loss=(y−z)2
上式中的 L o s s Loss Loss(简记为: L L L)通常也被称作损失函数,它是衡量模型好坏的指标。在回归问题中均方误差是一种比较常见的形式,分类问题中通常会采用交叉熵作为损失函数,在后续的章节中会更详细的介绍
因为计算损失函数时需要把每个样本的损失函数值都考虑到,所以我们需要对单个样本的损失函数进行求和,并除以样本总数 N N N。
L = 1 N ∑ i ( y i − z i ) 2 L= \frac{1}{N}\sum_i{(y_i - z_i)^2} L=N1i∑(yi−zi)2
使用定义的Network类,可以方便的计算预测值和损失函数。需要注意的是,类中的变量 x x x, w w w, b b b, z z z, e r r o r error error等均是向量。以变量 x x x为例,共有两个维度,一个代表特征数量(值为13),一个代表样本数量
上述计算过程描述了如何构建神经网络,通过神经网络完成预测值和损失函数的计算。接下来介绍如何求解参数 w w