poj3735

矩阵乘法

题意:一个一维数组,全为0,对它进行一系列操作,包括某位+1,某位清零,交换某两位。将这一系列操作进行m次。问数组的最终情况。

分析:数组的元素从第一位开始,把第0位附为1,我们构造一个n*n矩阵使得原1*n矩阵每乘以一次这个矩阵,得到的结果就相当于进行了一次一系列操作。然后用矩阵快速幂即可。构造矩阵的方法是:操作一,0行某列位置元素++;操作二,某列清零;操作三,交换两列。

矩阵乘法需要优化:

    for (int i = 0; i < a.x; i++)
        for (int k = 0; k < a.y; k++)
            if (a.a[i][k])
                for (int j = 0; j < b.y; j++)
                    ret.a[i][j] += a.a[i][k] * b.a[k][j];

否则超时。

View Code
#include <iostream>
#include
<cstdio>
#include
<cstdlib>
#include
<cstring>
using namespace std;

#define maxn 110

struct Matrix
{
long long x, y;
long long a[maxn][maxn];
} f, temp;

long long n, m, r;

Matrix mul(Matrix
&a, Matrix &b)
{
Matrix ret;
memset(ret.a,
0, sizeof(ret.a));
ret.x
= a.x;
ret.y
= b.y;
for (int i = 0; i < a.x; i++)
for (int k = 0; k < a.y; k++)
if (a.a[i][k])
for (int j = 0; j < b.y; j++)
ret.a[i][j]
+= a.a[i][k] * b.a[k][j];
return ret;
}

Matrix power(Matrix
&a, long long n)
{
Matrix m
= a;
Matrix ret;
memset(ret.a,
0, sizeof(ret.a));
for (int i = 0; i < a.x; i++)
ret.a[i][i]
= 1;
ret.x
= ret.y = a.x;
while (n > 0)
{
if (1 & n)
ret
= mul(ret, m);
m
= mul(m, m);
n
>>= 1;
}
return ret;
}

void input()
{
memset(f.a,
0, sizeof(f.a));
for (int i = 0; i <= n; i++)
f.a[i][i]
= 1;
f.x
= f.y = n + 1;
for (int i = 0; i < m; i++)
{
int a, b;
char ch[2];
scanf(
"%s", ch);
if (ch[0] == 'g')
{
scanf(
"%d", &a);
f.a[
0][a]++;
}
else if (ch[0] == 'e')
{
scanf(
"%d", &a);
for (int j = 0; j <= n; j++)
f.a[j][a]
= 0;
}
else
{
scanf(
"%d%d", &a, &b);
for (int j = 0; j <= n; j++)
swap(f.a[j][a], f.a[j][b]);
}
}
}

void work()
{
Matrix ans;
memset(ans.a,
0, sizeof(ans.a));
ans.x
= 1;
ans.y
= n + 1;
ans.a[
0][0] = 1;
ans
= mul(ans, f);
printf(
"%lld", ans.a[0][1]);
for (int i = 2; i <= n; i++)
printf(
" %lld", ans.a[0][i]);
putchar(
'\n');
}

int main()
{
//freopen("t.txt", "r", stdin);
while (scanf("%lld%lld%lld", &n, &r, &m), n | r | m)
{
input();
f
= power(f, r);
work();
}
return 0;
}

你可能感兴趣的:(poj)