在前文Spark源码分析之-scheduler模块中提到了Spark在资源管理和调度上采用了Hadoop YARN的方式:外层的资源管理器和应用内的任务调度器;并且分析了Spark应用内的任务调度模块。本文就Spark的外层资源管理器-deploy模块进行分析,探究Spark是如何协调应用之间的资源调度和管理的。
Spark最初是交由Mesos进行资源管理,为了使得更多的用户,包括没有接触过Mesos的用户使用Spark,Spark的开发者添加了Standalone的部署方式,也就是deploy模块。因此deploy模块只针对不使用Mesos进行资源管理的部署方式。
deploy模块主要包含3个子模块:master, worker, client。他们继承于Actor
,通过actor实现互相之间的通信。
StandaloneExecutorBackend
。SparkContext
时会实例化SparkDeploySchedulerBackend
,而实例化SparkDeploySchedulerBackend
的同时就会启动client,通过向client传递启动参数和application有关信息,client向master发送请求注册application并且在slave node上启动StandaloneExecutorBackend
。下面来看一下deploy模块的类图:
Deploy模块并不复杂,代码也不多,主要集中在各个子模块之间的消息传递和处理上,因此在这里列出了各个模块之间传递的主要消息:
client to master
RegisterApplication
(向master注册application)master to client
RegisteredApplication
(作为注册application的reply,回复给client)ExecutorAdded
(通知client worker已经启动了Executor环境,当向worker发送LaunchExecutor
后通知client)ExecutorUpdated
(通知client Executor状态已经发生变化了,包括结束、异常退出等,当worker向master发送ExecutorStateChanged
后通知client)master to worker
LaunchExecutor
(发送消息启动Executor环境)RegisteredWorker
(作为worker向master注册的reply)RegisterWorkerFailed
(作为worker向master注册失败的reply)KillExecutor
(发送给worker请求停止executor环境)worker to master
RegisterWorker
(向master注册自己)Heartbeat
(定期向master发送心跳信息)ExecutorStateChanged
(向master发送Executor状态改变信息)Deploy模块相比于scheduler模块简单,因此对于deploy模块的代码并不做十分细节的分析,只针对application的提交和结束过程做一定的分析。
Client是由SparkDeploySchedulerBackend
创建被启动的,因此client是被嵌入在每一个application中,只为这个applicator所服务,在client启动时首先会先master注册application:
def start() { // Just launch an actor; it will call back into the listener. actor = actorSystem.actorOf(Props(new ClientActor)) } override def preStart() { logInfo("Connecting to master " + masterUrl) try { master = context.actorFor(Master.toAkkaUrl(masterUrl)) masterAddress = master.path.address master ! RegisterApplication(appDescription) //向master注册application context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) context.watch(master) // Doesn't work with remote actors, but useful for testing } catch { case e: Exception => logError("Failed to connect to master", e) markDisconnected() context.stop(self) } }
Master在收到RegisterApplication
请求后会把application加到等待队列中,等待调度:
case RegisterApplication(description) => { logInfo("Registering app " + description.name) val app = addApplication(description, sender) logInfo("Registered app " + description.name + " with ID " + app.id) waitingApps += app context.watch(sender) // This doesn't work with remote actors but helps for testing sender ! RegisteredApplication(app.id) schedule() }
Master会在每次操作后调用schedule()
函数,以确保等待的application能够被及时调度。
在前面提到deploy模块是资源管理模块,那么Spark的deploy管理的是什么资源,资源以什么单位进行调度的呢?在当前版本的Spark中,集群的cpu数量是Spark资源管理的一个标准,每个提交的application都会标明自己所需要的资源数(也就是cpu的core数),Master以FIFO的方式管理所有的application请求,当资源数量满足当前任务执行需求的时候该任务就会被调度,否则就继续等待,当然如果master能给予当前任务部分资源则也会启动该application。schedule()
函数实现的就是此功能。
def schedule() { if (spreadOutApps) { for (app <- waitingApps if app.coresLeft > 0) { val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) .filter(canUse(app, _)).sortBy(_.coresFree).reverse val numUsable = usableWorkers.length val assigned = new Array[Int](numUsable) // Number of cores to give on each node var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum) var pos = 0 while (toAssign > 0) { if (usableWorkers(pos).coresFree - assigned(pos) > 0) { toAssign -= 1 assigned(pos) += 1 } pos = (pos + 1) % numUsable } // Now that we've decided how many cores to give on each node, let's actually give them for (pos <- 0 until numUsable) { if (assigned(pos) > 0) { val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) launchExecutor(usableWorkers(pos), exec, app.desc.sparkHome) app.state = ApplicationState.RUNNING } } } } else { // Pack each app into as few nodes as possible until we've assigned all its cores for (worker <- workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) { for (app <- waitingApps if app.coresLeft > 0) { if (canUse(app, worker)) { val coresToUse = math.min(worker.coresFree, app.coresLeft) if (coresToUse > 0) { val exec = app.addExecutor(worker, coresToUse) launchExecutor(worker, exec, app.desc.sparkHome) app.state = ApplicationState.RUNNING } } } } } }
当application得到调度后就会调用launchExecutor()
向worker发送请求,同时向client汇报状态:
def launchExecutor(worker: WorkerInfo, exec: ExecutorInfo, sparkHome: String) { worker.addExecutor(exec) worker.actor ! LaunchExecutor(exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory, sparkHome) exec.application.driver ! ExecutorAdded(exec.id, worker.id, worker.host, exec.cores, exec.memory) }
至此client与master的交互已经转向了master与worker的交互,worker需要配置application启动环境
case LaunchExecutor(appId, execId, appDesc, cores_, memory_, execSparkHome_) => val manager = new ExecutorRunner( appId, execId, appDesc, cores_, memory_, self, workerId, ip, new File(execSparkHome_), workDir) executors(appId + "/" + execId) = manager manager.start() coresUsed += cores_ memoryUsed += memory_ master ! ExecutorStateChanged(appId, execId, ExecutorState.RUNNING, None, None)
Worker在接收到LaunchExecutor
消息后创建ExecutorRunner
实例,同时汇报master executor环境启动。
ExecutorRunner
在启动的过程中会创建线程,配置环境,启动新进程:
def start() { workerThread = new Thread("ExecutorRunner for " + fullId) { override def run() { fetchAndRunExecutor() } } workerThread.start() // Shutdown hook that kills actors on shutdown. ... } def fetchAndRunExecutor() { try { // Create the executor's working directory val executorDir = new File(workDir, appId + "/" + execId) if (!executorDir.mkdirs()) { throw new IOException("Failed to create directory " + executorDir) } // Launch the process val command = buildCommandSeq() val builder = new ProcessBuilder(command: _*).directory(executorDir) val env = builder.environment() for ((key, value) <- appDesc.command.environment) { env.put(key, value) } env.put("SPARK_MEM", memory.toString + "m") // In case we are running this from within the Spark Shell, avoid creating a "scala" // parent process for the executor command env.put("SPARK_LAUNCH_WITH_SCALA", "0") process = builder.start() // Redirect its stdout and stderr to files redirectStream(process.getInputStream, new File(executorDir, "stdout")) redirectStream(process.getErrorStream, new File(executorDir, "stderr")) // Wait for it to exit; this is actually a bad thing if it happens, because we expect to run // long-lived processes only. However, in the future, we might restart the executor a few // times on the same machine. val exitCode = process.waitFor() val message = "Command exited with code " + exitCode worker ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, Some(message), Some(exitCode)) } catch { case interrupted: InterruptedException => logInfo("Runner thread for executor " + fullId + " interrupted") case e: Exception => { logError("Error running executor", e) if (process != null) { process.destroy() } val message = e.getClass + ": " + e.getMessage worker ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, Some(message), None) } } }
在ExecutorRunner
启动后worker向master汇报ExecutorStateChanged
,而master则将消息重新pack成为ExecutorUpdated
发送给client。
至此整个application提交过程基本结束,提交的过程并不复杂,主要涉及到的消息的传递。
由于各种原因(包括正常结束,异常返回等)会造成application的结束,我们现在就来看看applicatoin结束的整个流程。
application的结束往往会造成client的结束,而client的结束会被master通过Actor
检测到,master检测到后会调用removeApplication()
函数进行操作:
def removeApplication(app: ApplicationInfo) { if (apps.contains(app)) { logInfo("Removing app " + app.id) apps -= app idToApp -= app.id actorToApp -= app.driver addressToWorker -= app.driver.path.address completedApps += app // Remember it in our history waitingApps -= app for (exec <- app.executors.values) { exec.worker.removeExecutor(exec) exec.worker.actor ! KillExecutor(exec.application.id, exec.id) } app.markFinished(ApplicationState.FINISHED) // TODO: Mark it as FAILED if it failed schedule() } }
removeApplicatoin()
首先会将application从master自身所管理的数据结构中删除,其次它会通知每一个work,请求其KillExecutor
。worker在收到KillExecutor
后调用ExecutorRunner
的kill()
函数:
case KillExecutor(appId, execId) => val fullId = appId + "/" + execId executors.get(fullId) match { case Some(executor) => logInfo("Asked to kill executor " + fullId) executor.kill() case None => logInfo("Asked to kill unknown executor " + fullId) }
在ExecutorRunner
内部,它会结束监控线程,同时结束监控线程所启动的进程,并且向worker汇报ExecutorStateChanged
:
def kill() { if (workerThread != null) { workerThread.interrupt() workerThread = null if (process != null) { logInfo("Killing process!") process.destroy() process.waitFor() } worker ! ExecutorStateChanged(appId, execId, ExecutorState.KILLED, None, None) Runtime.getRuntime.removeShutdownHook(shutdownHook) } }
Application结束的同时清理了master和worker上的关于该application的所有信息,这样关于application结束的整个流程就介绍完了,当然在这里我们对于许多异常处理分支没有细究,但这并不影响我们对主线的把握。
至此对于deploy模块的分析暂告一个段落。deploy模块相对来说比较简单,也没有特别复杂的逻辑结构,正如前面所说的deploy模块是为了能让更多的没有部署Mesos的集群的用户能够使用Spark而实现的一种方案。
当然现阶段看来还略微简陋,比如application的调度方式(FIFO)是否会造成小应用长时间等待大应用的结束,是否有更好的调度策略;资源的衡量标准是否可以更多更合理,而不单单是cpu数量,因为现实场景中有的应用是disk intensive,有的是network intensive,这样就算cpu资源有富余,调度新的application也不一定会很有意义。
总的来说作为Mesos的一种简单替代方式,deploy模块对于推广Spark还是有积极意义的。