奇异值分解是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。
目录 |
假设M是一个m×n阶矩阵,其中的元全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得
其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。
常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。)
在矩阵M的奇异值分解中
因为U 和V 向量都是单位化的向量, 我们知道U的列向量u1,...,um组成了Km空间的一组标准正交基。同样,V的列向量v1,...,vn也组成了Kn空间的一组标准正交基(根据向量空间的标准点积法则).
线性变换T: Kn → Km,把向量x变换为Mx。考虑到这些标准正交基,这个变换描述起来就很简单了: T(vi) = σi ui, for i = 1,...,min(m,n), 其中σi 是对角阵Σ中的第i个元素; 当i > min(m,n)时,T(vi) = 0。
这样,SVD理论的几何意义就可以做如下的归纳:对于每一个线性映射T: Kn → Km,T把Kn的第i个基向量映射为Km的第i个基向量的非负倍数,然后将余下的基向量映射为零向量。对照这些基向量,映射T就可以表示为一个非负对角阵。
1. 矩阵范数的概念 设A∈Cm×n,定义一个实值函数||A||,若满足:
(1) 非负性:||A||≥0,且||A||=0当且仅当A=0; (2) 齐次性:||aA||=|a| ||A||,a∈C; (3) 三角不等式:||A+B||≤||A||+||B||,A,B∈ Cm×n; (4) 相容性:||AB||≤||A|| ||B||
则称||A||为A的矩阵范数。 例1 设A=(aij)∈Cn×n,则
都是矩阵范数。
定理2:由向量的1-范数、2-范数和∞-范数分别诱导出的矩阵范数分别是
通常依次称为列和范数、谱范数和行和范数。
定理3:谱范数和F-范数都是酉不变范数,即对于任意酉矩阵P和Q,有||PAQ||=||A||。
奇异值分解可以被用来计算矩阵的伪逆。若矩阵 M 的奇异值分解为 M = UΣV * ,那么 M 的伪逆为
其中 Σ+ 是将Σ转置,并将其主对角线上每个非零元素都求倒数得到的。求伪逆通常可以用来求解线性最小平方问题。
把频率选择性衰落信道进行分解.
奇异值分解在统计中的主要应用为主成分分析(PCA),它是一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。 数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。
matlab: [b c d]=svd(A) OpenCV: void cvSVD( CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0 )