计算机视觉四大任务模型汇总

计算机视觉中有四大核心任务:

      1-分类任务、2-目标检测任务、3-目标分割任务 和 4-关键点检测任务

文章1:

一文读懂计算机视觉4大任务

文章2:

图像的目标分割任务:语义分割和实例分割

 不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:

注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用

1-分类任务模型

序号 模型 ipynb模型的github链接
1 LeNet https://github.com/udacity/CarND-LeNet-Lab
2 AlexNet https://github.com/Fannjh/AlexNet-TF
3 VGGNet https://github.com/Fozan-Talat/Image-Classifier-VGG
4 GoogLeNet GitHub - AbdelrahmanShehata482/CNN-project: CNN_Project (py and ipynb code ) (Vgg16-GoogleNet from scratch)
5 ResNet GitHub - ry/tensorflow-resnet: ResNet model in TensorFlow
6 DenseNet GitHub - titu1994/DenseNet: DenseNet implementation in Keras
7 MobileNet https://github.com/Zehaos/MobileNet
8 EfficientNet https://github.com/qubvel/efficientnet
9 SVM(支持向量机) https://github.com/Think103/-

2-目标检测任务模型

序号 模型 ipynb模型的github链接
1 R-CNN(已过时)
2 Fast R-CNN(已过时)
3 Faster R-CNN GitHub - kbardool/Keras-frcnn: Keras Implementation of Faster R-CNN
4 YOLO https://github.com/ultralytics/yolov5
5 SSD https://github.com/lufficc/SSD
6 RetinaNet https://github.com/fizyr/keras-retinanet
7 Mask R-CNN https://github.com/SanmathiK/PedNet
8 EfficientDet GitHub - xuannianz/EfficientDet: EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow
9 CenterNet https://github.com/xingyizhou/CenterNet

3-目标分割任务模型

序号 分割类型 模型 ipynb模型的github链接
1 语义分割 FCN GitHub - wkentaro/pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
2 U-Net GitHub - yingkaisha/keras-unet-collection: The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
3 DeepLab GitHub - fregu856/deeplabv3: PyTorch implementation of DeepLabV3, trained on the Cityscapes dataset.
4 PSPNet GitHub - Lextal/pspnet-pytorch: PyTorch implementation of PSPNet segmentation network
5 SegNet GitHub - preddy5/segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
6 HRNet GitHub - HRNet/HRNet-Image-Classification: Train the HRNet model on ImageNet
7

实例分割

Mask R-CNN https://github.com/saikoneru/Instance-Segementation
8 PANet https://github.com/kaixin96/PANet
9 YOLACT https://github.com/dbolya/yolact
10 SOLO https://github.com/iambankaratharva/SOLO-Instance-Segmentation
11 PointRend https://github.com/zsef123/PointRend-PyTorch

计算机视觉四大任务模型汇总_第1张图片

4-关键点检测任务模型

序号 检测目标 模型 ipynb模型的github链接
1

人脸

Dlib GitHub - davisking/dlib: A toolkit for making real world machine learning and data analysis applications in C++
2 MTCNN GitHub - ipazc/mtcnn: MTCNN face detection implementation for TensorFlow, as a PIP package.
3 FaceBoxes GitHub - zisianw/FaceBoxes.PyTorch: A PyTorch Implementation of FaceBoxes
4 PRNet GitHub - yfeng95/PRNet: Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network (ECCV 2018)
5

人体

OpenPose GitHub - Hzzone/pytorch-openpose: pytorch implementation of openpose including Hand and Body Pose Estimation.
6 HRNet https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
7 CPM GitHub - PanZiqiAI/CPM-Clothes-Keypoints-Detection: Convolutional Pose Machine implemented for clothes key points detection.
8 Mask R-CNN with Keypoint Detection Branch GitHub - chrispolo/Keypoints-of-humanpose-with-Mask-R-CNN: Use the Mask RCNN for the human pose estimation
9 AlphaPose GitHub - Amanbhandula/AlphaPose: AlphaPose Implementation in Pytorch along with the pre-trained weights
10 MoveNet GitHub - fire717/movenet.pytorch: A Pytorch implementation of MoveNet from Google. Include training code and pre-trained model.

需要说明,上表中模型名称并不单指某个模型,而是一类模型统称,如YOLO模型实际包括了yolov1~yolov10的10个系列。

你可能感兴趣的:(《神经网络与深度学习》理论,计算机视觉,人工智能,深度学习,图像分类,图像目标检测,目标分割,关键点检测)