- O (1) 空间搞定链表:穿针引线法核心技巧与例题
无聊的小坏坏
算法链表c++算法
文章目录穿针引线法的核心思想基础应用:链表反转1.全链表反转2.部分链表反转高级应用:链表重排穿针引线法的设计模式常见问题解决方案1.K个一组反转链表2.环形链表检测在链表操作的世界里,"穿针引线"是一种优雅而高效的技巧,它通过精准的指针操作,像缝纫一样重新连接节点,解决各种复杂的链表问题。这种技巧不依赖额外数据结构,空间复杂度仅为O(1),是算法面试中的必备技能。穿针引线法的核心思想指针即针线:
- 华为OD机试2025 B卷 - 通过软盘拷贝文件 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
通过软盘拷贝文件华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述有一名科学家想要从一台古董电脑中拷贝文件到自己的电脑中加以研究。但此电脑除了有一个3.5寸软盘驱动器以外,没有任何手段可以将文件持贝出来,而且只有一张软盘可以使用。因此这一张软盘是唯一可以用来拷贝文件的载体。科学家想要尽可能多地将计算机中的信息拷贝到
- python学智能算法(二十四)|SVM-最优化几何距离的理解
引言前序学习过程中,已经对几何距离的概念有了认知,学习链接为:几何距离这里先来回忆几何距离δ的定义:δ=mini=1...myi(w∥w∥⋅xi+b∥w∥)\delta=\min_{i=1...m}y_{i}(\frac{w}{\left\|w\right\|}\cdotx_{i}+\frac{b}{\left\|w\right\|})δ=i=1...mminyi(∥w∥w⋅xi+∥w∥b)对上
- 华为OD机试2025C卷 - 计算三叉搜索树的高度 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD2025C卷华为OD机考2025C卷
计算三叉搜索树的高度华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述定义构造三叉搜索树规则如下:每个节点都存有一个数,当插入一个新的数时,从根节点向下寻找,直到找到一个合适的空节点插入。查找的规则是:如果数小于节点的数减去500,则将数插入节点的左子树如果数大于节点的数加上500,则将数插入节点的右子树否则,将数
- 支持向量机SVM
李昊哲小课
sklearn人工智能机器学习支持向量机算法机器学习sklearn人工智能数据挖掘
支持向量机SVM一、支持向量机算法支持向量机(SupportVectorMachine,SVM)是一种用于分类和回归分析的机器学习算法。分类场景举例(更容易理解)假设现在有一个二维平面上散落着一些点,这些点分为两类,一类是红色的圆形点,另一类是蓝色的方形点。我们的任务就是找到一条直线,能够把这两类点尽可能准确地分开。支持向量机算法做的事情就和这个类似。算法核心思想它不是随便找一条能分开两类数据的直
- 打卡Day12
HAhhhiu
python学习打卡python机器学习
@浙大疏锦行知识点:遗传算法:来源于自然界中的生物进化和基因遗传思想:模拟生物进化过程,通过“选择(保留优秀解)、交叉(组合解的特征)、变异(引入新特征)”迭代优化我想培养出一只超级泰迪犬?该怎么办呢?首先,我有一群泰迪犬,但是小泰迪们的各种基因不同,形态各色,我只想要一只高大、卷毛和聪明的泰迪。(这是初始解的集合,也是案例学习代码中,我们所设定的随机森林中的一堆的参数范围)接着,我开始挑选符合上
- 财富自由之路第三章
可可_4b5e
读好书一定要慢。文字的出现,使人类与其他动物区分开来。人类也正是因为有了文字才与其它物种有了本质上的不同。而阅读,对于任何一个正常人类来说都具有非凡的意义。人类之外的物种只能依赖最落后但被称为神奇的方式积累经验:基因遗传。啄木鸟可以本能地采用最优算法获取食物——而一个MIT的数学博士面对同样的问题却不见得可以迅速解决;而啄木鸟的小脑袋在没有受过高等教育的情况下,是如何得到结果的呢?答案是:通过上百
- 【数据结构 | C语言】Dijkstra算法(迪杰斯特拉算法)
竹一笔记
C数据结构数据结构c语言开发语言
文章目录一、Dijkstra算法介绍二、算法C语言三、完整代码四、示例一、Dijkstra算法介绍Dijkstra算法解决了单源点的最短路径Dijkstra算法是贪心算法步骤:从源点出发,找到已连通点与未连通点的最小代价边连接最小代价边,将该顶点归并到已连接顶点集将该顶点连通的边的代价与最小代价比较,若代价小于最小代价,则更新最小代价边重复操作,直到连通所有顶点为止Dijkstra算法与Prim算
- lab2-2 Dijkstra算法求由顶点a到顶点h的最短路径
西一安鲜
算法
1.问题[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)]对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径,按实验报告模板编写算法。2.解析Dijkstra算法(单源点路径算法,要求:图中不存在负权值边),Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。Dijkstra(迪杰斯特拉)算法是典型的
- 单源最短路之dijkstra
「維他檸檬茶」
算法最短路
迪杰斯特拉算法主要用于解决单源最短路问题,主要有两种,朴素版和堆优化版,数据量较大时用堆优化版。迪杰斯特拉朴素版:#include#includeusingnamespacestd;#defineintlonglong//可能会超时#definePIIpairconstintINF=0x3f3f3f3f,mod=998244353;constintN=505;intn,m;intg[N][N],m
- 【初学数据结构】关于KMP算法的回退思考
Das1
算法数据结构
初学KMP算法时,理解next数组以及回退过程是一个超级劝退过程。如果实在理解不了的,可以直接背。虽然作为十大经典算法之一,但是并不是非常重要,也就考试会考到罢了。关键数据结构解释next数组:next[k]是t[0]~t[j-1]这个串的最大相同前缀的后一个地址,同时也表示最大相同前缀的数量。s串,t串:表示两个索引j,k在进行匹配时所指代的字串next数组是什么?求next数组实际上就是求对于
- 【算法-图论】图的定义与一些常用术语
小蛋编程
C++c++算法
【算法-图论】图的定义图论编辑器1:https://csacademy.com/app/graph_editor/图论编辑器2:https://graphonline.top/ch/1.图是什么图(graph)由节点(node)和边(edge)组成。其中,节点集合记为VVV,边集合记为EEE。每条边连接两个节点,某些图的边可能具有方向性。集合元素的数量用该集合的绝对值来表示。通过对比可以看出,图比
- 【PTA数据结构 | C语言版】求图中关键活动
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现求带权的有向图中关键活动的算法。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。输出格式:按格式输出关键活动,其中u为起点编号,v为终点编号。按起点编号的
- 【PTA数据结构 | C语言版】最短路的交点
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目给定有向加权图G,和4个顶点u,v,s,t。假设图G中所有边的权值都非负。设计一个算法来判定“从u到v的最短路径”和“从s到t的最短路径”是否存在一个交点w。也即,顶点w是u到v的最短路径上的一个顶点,同时也是s到t的最短路径上的一个顶点。注意:最短路径包含两个端点;一对顶点间的最短路径可能不止一条,求交点时必须将所有最短路径考虑在内。输
- 【图论】CF——B. Chamber of Secrets (0-1BFS)
KyollBM
图论算法
链接:https://codeforces.com/problemset/problem/173/B题目:思路:初识01BFS什么是01BFS呢?通常的BFS为一步权值为1,而某些题需要的不是走到步数,而是某种操作数,如花费一个操作可以走k步,而不花费只能走1步,通常我们使用双端队列可插队的性质来进行代码的编写,具体的对于不花费,那么就插入到前面,而对于花费则插入到最后本题中操作为“四射”,所以按
- 【PTA数据结构 | C语言版】求单源最短路的Dijkstra算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现在带权的有向图中求单源最短路的Dijkstra算法。注意:当多个待收录顶点路径等长时,按编号升序进行收录。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。
- 防不胜防!第六届研究所老姜(姜新宁)算力3.0亏损被骗曝光,巨额损失真相令人胆寒心惊!
大盛律道
数字经济十选五投资诈骗套路频出,投资者股民的“钱袋子”多有损失,以投资理财获取大数据数字经济投资算法为由,将投资者的积蓄收入囊中,成为不法分子常用的诈骗手段之一。为守护好投资者的“钱袋子”,小编持续开展曝光数字经济诈骗行动,维护“投资者”合法权益。近年来,股市波动不断,投资者们无不渴望找到稳健的投资途径。而一些不法分子趁机利用第六届研究所荐股群的手段,设下重重陷阱,致使投资者损失惨重。骗子冒充姜新
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 长篇科幻小说《黄茧》第33章 发现 3
橙黄茧香
如果……如果那样下沉……那样穿越,就……就算最终能够完成,只怕……只怕我……我也会被这透明凝胶给窒息而亡。提取转化后的个体意识量子态信息数据,全需接受蜜云虚拟世界数理逻辑算法制约,必须在M蜜巢系统模式构架下运行,故环境数据对个体意识数据形成制约,如两者间发生数理冲突,个体意识信息数据必会被M蜜巢系统算法清除,个体意识也就将会在蜜云虚拟世界内消亡,窒息本质上对信息数据不构成损伤,但它执行是蜜云虚拟世
- ROS和autosar区别和联系,以及AP/CP对比ROS
Jaliang_
汽车
ROS和autosar区别和联系ROS(RobotOperatingSystem)和AUTOSAR(AutomotiveOpenSystemArchitecture)是两个不同领域的开源软件框架。应用领域的不同:ROS主要面向机器人技术和相关的智能系统,它为机器人研发提供了一套完整的软件解决方案,包括通信、驱动、算法、模拟等各方面的支持。ROS适合用于机器人的控制、感知、规划、模拟等方面的开发,也
- C#实现24种数据校验算法的综合指南及工具包.zip
语嫣凝冰
本文还有配套的精品资源,点击获取简介:在数据通信和网络编程中,数据的完整性和准确性是至关重要的。C#作为一种流行的开发语言,提供了强大的工具来实现各类数据校验算法。本压缩包包含了一个名为“WindowsFormsApp”的C#应用程序,用于展示和实验24种数据校验方法,涵盖从简单到复杂的各种算法。这包括CRC校验、MD5、SHA系列、Adler32、Checksum、ParityBit、LRC、H
- 《数据结构》学习笔记二:算法(二)
小曼blog
继续上节的学习,我们在这一篇文章里把“算法”这一章内容学习完。本节解决问题:算法的好坏到底是如何评估的?知识点:1.函数的渐进增长2.算法的时间复杂度3.常见的时间复杂度4.算法的空间复杂度1.函数的渐进增长这一知识点与数学相关,不过没关系都是很容易理解的内容。问题:假如两个算法的输入规模都是n,A的执行次数是2n+3,B的执行次数是3n+1,那么这两个算法哪一个更好呢?我们来分析一下,用数学的折
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 集群技术笔记-HAProxy 与 Keepalived 高可用负载均衡实战
目录前言HAProxy一、HAProxy介绍(一)定义(二)核心优势(三)调度算法速查表(四)工作模式(五)配置文件结构(六)健康检查字段二、搭建负载均衡集群(一)准备基本环境(二)配置流程配置真实服务器配置代理服务器(三)客户端验证三、配置健康检查页面(一)修改配置文件追加配置内容(二)重启服务(三)浏览器访问验证Keepalived一、Keepalived介绍(一)定义(二)功能(三)工作原理
- LVS调度算法
等风来也chen
随笔lvslvs调度算法
LVS的十种调度算法一)静态调度:①RR(RoundRobin):轮询调度轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。【提示:这里是不考虑每台服务器的处理能力】②WRR:weight,加权轮询(以权重之间的比例实现在各主机之间进行调度)由于每台服
- LVS调度算法+防火墙解决轮询调度问题+会话解决
甜辣小悦羊
lvs服务器运维
lvs的调度算法类型分配:依据负载状态静态方法:仅根据算法本身进行调度,不考虑RS的负载情况动态方法:主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度静态调度方法:RR(roundrobin):轮询RS分别被调度,当RS配置有差别时不推荐WRR(WeightedRR):加权轮询根据RS的配置进行加权调度,性能差的RS被调度的次数少SH(SourceHas
- LVS的10种调度算法
蜡笔晓心
其他
1.1静态算法:1.1.1rr(roundrobin):轮询调度算法:轮询调度算法的原理就是依次将用户的访问请求,平均的分配到每一台web服务节点上,从1开始,到最后一台服务器节点结束,然后在开始新一轮的循环,这种算法简单,但是没有考虑到每台节点服务器的具体性能1.1.2wrr(weight):权重调度算法由于每台服务器的性能会高低不同,wrr将会根据管理员设定的权重值来分配访问请求,权重值越大的
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f