STF(Supervised Fine-Tuning)和RLHF(Reinforcement Learning from Human Feedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:
STF(监督微调):
RLHF(基于人类反馈的强化学习):
STF:
RLHF:
STF:
RLHF:
STF:
RLHF:
STF:
RLHF:
STF和RLHF各有优劣,选择哪种方法取决于具体应用场景和目标。STF适用于有明确标注数据的任务,而RLHF则更适合需要高质量生成输出的任务。
STF(监督微调)中的数据通常是结构化的标注数据,用于特定任务的模型训练。数据格式因任务而异,但一般都包括输入和对应的正确输出(标签)。以下是一些常见任务及其数据格式示例:
任务:将文本分配到预定义的类别。
数据格式:
{
"text": "The movie was fantastic and full of excitement.",
"label": "positive"
}
任务:将文本从一种语言翻译到另一种语言。
数据格式:
{
"source_text": "Hello, how are you?",
"target_text": "Bonjour, comment ça va?"
}
任务:判断文本的情感倾向。
数据格式:
{
"text": "I am so happy with the service!",
"label": "positive"
}
任务:识别文本中的命名实体并标注其类别。
数据格式:
{
"text": "Apple is looking at buying U.K. startup for $1 billion.",
"entities": [
{"start": 0, "end": 5, "label": "ORG"},
{"start": 27, "end": 30, "label": "LOC"},
{"start": 44, "end": 54, "label": "MONEY"}
]
}
任务:根据问题在给定文本中找到答案。
数据格式:
{
"context": "Albert Einstein was a theoretical physicist who developed the theory of relativity.",
"question": "Who developed the theory of relativity?",
"answer": "Albert Einstein"
}
任务:根据给定的提示生成文本。
数据格式:
{
"prompt": "Write a short story about a dragon.",
"completion": "Once upon a time, there was a dragon who loved to read books. Every day, it would visit the library in the enchanted forest..."
}
任务:将图像分配到预定义的类别。
数据格式:
{
"image_path": "path/to/image.jpg",
"label": "cat"
}
在监督微调过程中,这些标注数据用于训练模型,使其在特定任务上表现更好。具体步骤包括:
假设我们有一个情感分析任务,以下是一个完整的示例:
{
"text": "The product quality is amazing and I am very satisfied.",
"label": "positive"
}
通过这种标注数据,模型可以学习如何判断文本的情感倾向,进而在实际应用中准确分类新的文本数据。
RLHF(Reinforcement Learning from Human Feedback)中的数据主要由人类对模型输出的反馈组成。这些反馈数据通常包括以下几种形式:
人类评审员会对比模型生成的多个输出,并选择他们认为更好的一个。这种数据格式通常如下:
{
"prompt": "Write a short story about a dragon.",
"outputs": [
{"text": "Once upon a time, there was a dragon who loved to read books.", "rating": 1},
{"text": "In a faraway land, a dragon guarded a hidden treasure.", "rating": 2}
],
"preferred_output": 1
}
人类评审员对每个输出进行评分,评分可以是绝对的(例如1到5分)或相对的(例如比另一个输出好多少)。这种数据格式通常如下:
{
"prompt": "Explain the theory of relativity.",
"outputs": [
{"text": "The theory of relativity, developed by Einstein, explains how time and space are linked.", "rating": 4},
{"text": "Einstein's theory of relativity shows how gravity affects time and space.", "rating": 5}
]
}
人类评审员对每个输出进行简单的好/坏评价。这种数据格式通常如下:
{
"prompt": "Translate 'Hello, how are you?' to French.",
"output": "Bonjour, comment ça va?",
"feedback": "positive"
}
人类评审员对多个输出进行排序,按照从最好到最差的顺序排列。这种数据格式通常如下:
{
"prompt": "Generate a poem about the sea.",
"outputs": [
{"text": "The sea is vast and deep, a mystery to keep.", "rank": 1},
{"text": "Waves crash on the shore, a sound I adore.", "rank": 2},
{"text": "Blue waters stretch far, under the evening star.", "rank": 3}
]
}
人类评审员提供详细的文本反馈,解释为什么他们喜欢或不喜欢某个输出。这种数据格式通常如下:
{
"prompt": "Describe a sunset.",
"output": "The sun sets over the horizon, painting the sky with hues of orange and pink.",
"feedback": "The description is vivid, but could use more detail about the colors and the overall atmosphere."
}
在训练过程中,这些反馈数据用于调整模型的奖励函数。通过强化学习算法(如PPO),模型学习如何生成更符合人类期望的输出。具体来说,模型会根据人类反馈调整策略,使得未来生成的输出能够获得更高的奖励。
假设我们有一个对话生成任务,以下是一个完整的示例:
{
"prompt": "Tell me a joke.",
"outputs": [
{"text": "Why don't scientists trust atoms? Because they make up everything!", "rating": 5},
{"text": "Why did the chicken join a band? Because it had the drumsticks!", "rating": 4}
],
"preferred_output": 0,
"feedback": "Both jokes are funny, but the first one is more related to science, which I find more interesting."
}
通过这种反馈数据,模型可以逐步学习生成更符合人类偏好的对话内容。