- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- 储能业 | 低成本部署!DolphinDB 打造抽水蓄能一体化解决方案
DolphinDB智臾科技
物联网数据库大数据DolphinDB实时计算抽水蓄能电力
导语在电力行业抽水蓄电场景中,电力集团可以基于DolphinDB搭建轻量化实时数仓,有效破解高频数据写入、万亿级数据存储和秒级实时计算等核心难题。同时,该方案助力集团降本增效,提升运维效率,并实现对多个电站数据的统一管理与调度,加快数字化转型步伐。一、行业背景构建清洁低碳、安全高效的新型能源电力系统是实现“双碳”目标的一大关键任务。其中,抽水蓄能作为当前最成熟、最具规模化应用前景的物理储能技术,正
- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- SnowConvert:自动化数据迁移的技术解析与最佳实践
weixin_30777913
迁移学习数据库运维
SnowConvert是Snowflake生态系统的关键迁移工具,专为将传统数据仓库(如Oracle、Teradata、SQLServer等)的代码资产高效、准确地转换为Snowflake原生语法而设计。以下基于官方文档对其技术原理、工作流程及最佳实践进行深入分析:一、SnowConvert核心技术解析精准的语法映射引擎语言支持:深度解析源系统特有语法(OraclePL/SQL,TeradataB
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- 针对数据仓库方向的大数据算法工程师面试经验总结
巴基海贼王
数据仓库大数据算法
⚙️一、技术核心考察点数据建模能力星型vs雪花模型:面试官常要求对比两种模型。星型模型(事实表+冗余维度表)查询性能高但存储冗余;雪花模型(规范化维度表)减少冗余但增加JOIN复杂度。需结合场景选择,如实时分析首选星型。建模实战题:例如设计电商销售数仓,需明确事实表(订单流水)、维度表(商品、用户、时间),并解释粒度选择(如订单级)。ETL流程与优化增量抽取方案:面试高频题。需掌握基于时间戳、CD
- 解锁阿里云AnalyticDB:数据仓库的革新利器
云资源服务商
阿里云云计算数据库服务器
AnalyticDB:云数据仓库新势力在数字化浪潮中,数据已成为企业的核心资产,而云数据仓库作为数据管理与分析的关键基础设施,正扮演着愈发重要的角色。阿里云AnalyticDB作为云数据仓库领域的佼佼者,以其卓越的性能、创新的架构和丰富的功能,为企业提供了强大的数据处理与分析能力,助力企业在数据驱动的时代中脱颖而出。AnalyticDB是阿里云自主研发的云原生数据仓库,采用存储计算分离+多副本架构
- 【面试系列】云计算工程师 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试云计算职场和发展
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.什么是云计算?2.
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 使用Airbyte连接Shopify进行数据集成实践
2301_80727036
语言模型elasticsearchjenkins
在当今的数据驱动时代,数据集成平台如Airbyte变得尤为重要。它不仅可以让从API、数据库和文件到仓库或数据湖的ELT流程变得高效,还提供了丰富的连接器,支持各种数据源的集成。尽管Airbyte的Shopify连接器已经不再推荐使用,但它的使用方法仍然能为我们揭示一些重要的实践技巧。技术背景介绍Airbyte是一个开源的数据集成平台,专注于从各种数据源将数据提取、加载到目标数据仓库或者数据湖中。
- 湖仓一体实时数据采集与存储实践
danny-IT技术博客
企业级SQLServer深度实践springbootsparkCDCDATALAKE
文章目录湖仓一体实时数据采集与存储实践1.实时数仓演进:从传统数仓到湖仓一体1.1传统数仓的局限性:批处理延迟与数据孤岛1.2湖仓一体(Lakehouse)的核心价值1.3典型行业场景解析案例1:金融实时风控案例2:电商库存同步2.CDC实时数据捕获技术选型2.1主流CDC技术对比Debezium实战配置2.2数据捕获模式详解全量快照模式增量日志模式2.3异常处理策略断点续传实现数据一致性保障3.
- Java EDW三剑客:如何让数据从“沼泽”变身“报告神器”?手把手教你玩转企业数据仓库!
墨瑾轩
Java乐园java数据仓库开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣一、你的EDW在“数据沼泽”里?是时候请个“数据炼金术士”了!“数据散落在10个系统里,生成月报要熬3个通宵?”——别慌!今天我们就用JDBC+ApacheSpark+Thymeleaf三剑客,教你如何让Java在EDW中将“数据沼泽”炼成“报告神器”!从“数
- Vue2中Vuex的五种核心状态管理详解:从State到Modules
上单带刀不带妹
Vue前端javascript开发语言vuevue.js
目录一、为什么需要Vuex?二、Vuex核心概念图解编辑三、五种核心状态详解1.State:数据仓库2.Getters:计算属性3.Mutations:同步修改器4.Actions:异步操作5.Modules:模块化四、各概念关系总结五、最佳实践技巧结语一、为什么需要Vuex?当组件层级变深、兄弟组件需要共享数据时,传统的props/$emit和事件总线会变得难以维护。Vuex通过集中式存储管理应
- 十、HQL:排序、联合与 CTE 高级查询
IvanCodes
Hive教程hive大数据
作者:IvanCodes日期:2025年5月15日专栏:Hive教程ApacheHive作为大数据领域主流的数据仓库解决方案,其查询语言HQL(HiveQueryLanguage)是数据分析师和工程师日常工作的核心。除了基础的SELECT-FROM-WHERE,HQL还提供了强大的排序、数据合并以及组织复杂查询的机制。本文将深入探讨HQL中的排序操作(SORTBY,ORDERBY,CLUSTERB
- maxcomputer 和 hologres中的EXTERNAL TABLE 和 FOREIGN TABLE
静听山水
#Hologres大数据
在阿里云的大数据和实时数仓产品中,MaxCompute和Hologres都支持类似于EXTERNALTABLE和FOREIGNTABLE的机制,但它们的实现和语义有所不同。下面分别说明:☁️一、MaxCompute中的EXTERNALTABLE和FOREIGNTABLE1.EXTERNALTABLEinMaxComputeMaxCompute的EXTERNALTABLE是指外部表,用于读取不属于M
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- 【StarRocks系列】StarRocks vs Mysql
漫步者TZ
StarRocksmysql数据库StarRocks分布式数据库
目录StarRocks简介核心特性典型应用场景StarRocksvsMySQL:核心区别详解关键差异总结如何选择?StarRocks简介StarRocks是一款高性能、全场景、分布式、实时分析型的数据库(MPP-大规模并行处理)。它诞生于解决现代企业对海量数据进行快速、复杂分析的需求,尤其是在实时数据仓库、用户行为分析、日志分析、统一数仓等场景下表现卓越。核心特性MPP架构:采用无共享架构,计算和
- 数据切片是什么意思
yijiedsfrt
数据仓库
数据切片是指将一段数据按照特定的规则或条件进行分割,以便更方便地进行处理和分析。通常情况下,数据切片可以根据不同的维度、属性、时间等进行切割,以获取更加细化和精准的数据。数据切片可以在数据仓库、数据分析等领域中广泛应用。
- 医疗AI大数据处理流程的全面解析:从数据源到应用实践
Allen_Lyb
医疗高效编程研发人工智能机器学习健康医疗架构大数据
医疗AI大数据处理流程是一个复杂而系统的工程,涉及从数据源获取到最终应用的多个关键环节。随着信息技术在医疗行业的深入应用,医疗数据呈现爆发式增长,如何有效处理这些数据并转化为有价值的医疗知识,成为推动医疗AI发展的核心问题。本报告将全面剖析医疗AI大数据处理流程的关键环节,包括数据源、数据授权、数据接入、数据清洗、数据标准化、数据治理、数据应用与AI分析,以及数据流与数据仓库的概念,为医疗AI从业
- 使用Spring Boot框架来生成HTML页面并返回给客户端
_S_Q
后端服务Javaspringboothtmlpython
文章目录1.创建SpringBoot项目1.1项目结构2.配置`pom.xml`3.编写代码3.1创建主应用程序类3.2创建数据模型3.3创建数据仓库3.4创建控制器3.5创建HTML模板4.运行应用程序总结下面是一个简单的Java实现,使用SpringBoot框架来生成HTML页面并返回给客户端。1.创建SpringBoot项目首先,确保你已经安装了Java和Maven。然后创建一个新的Spri
- Doris 数据集成 Apache Paimon
猫猫姐
Dorisdoris
Doris数据集成ApachePaimon湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭
- Hive集成Paimon
Edingbrugh.南空
数据湖hive大数据hivehadoop数据仓库
引言在大数据领域,数据存储与处理技术不断演进,各类数据管理工具层出不穷。ApacheHive作为经典的数据仓库工具,以其成熟的生态和强大的批处理能力,长期服务于海量数据的存储与分析;而ApachePaimon作为新兴的流式湖仓存储引擎,具备实时写入、高效查询和统一批流处理等特性,为数据管理带来了新的活力。将Hive与Paimon进行集成,能够充分融合两者优势,实现数据的高效存储、实时处理与灵活分析
- SPL轻量级多源混合计算
LuckJudy
数据计算多源混算esProcSPL
多样性数据源混合计算是常态需求,同构或异构数据库之间、文件与数据库、NoSQL与文件等,理论上任何数据存储之间都涉及数据混合计算和分析。但混算需求目前技术解决的并不好,同构库之间某些数据库还能支持,而完全异构的数据源实施混算就比较麻烦。经常要借助逻辑数据仓库,但基于SQL的逻辑数仓不仅能力有限,而且体系过于沉重,经常会比应用本身还复杂,只适合应用于大型场景中,并不适合众多日常的轻量多源混算场景。S
- 云原生数仓 vs 传统数仓:深度拆解区别、优劣势及主流选型
limnade
云原生数据仓库
云原生数仓vs传统数仓:深度拆解区别、优劣势及主流选型在数据驱动业务的当下,数据仓库作为企业数据中枢,承载着核心决策支持使命。随着云技术普及,云原生数仓与传统数仓的选型博弈愈发关键。本文从架构逻辑、核心能力到落地实践,深度拆解两者区别、优劣势,并梳理主流数仓方案,帮你精准锚定适配选型。一、底层逻辑:架构设计差异(一)传统数仓:紧耦合“巨石架构”传统数仓(如Teradata经典方案、Greenplu
- 深入理解SQLMesh中的SCD Type 2:缓慢变化维度的实现与管理
梦想画家
数据分析工程数据工程SCD2维度模型SQLMesh
在数据仓库和商业智能领域,处理随时间变化的数据是一个常见且具有挑战性的任务。缓慢变化维度(SlowlyChangingDimensions,SCD)是解决这一问题的经典模式。本文将深入探讨SQLMesh中SCDType2的实现方式、配置选项以及实际应用场景。什么是SCDType2?SCDType2是一种用于跟踪维度表中记录历史变化的模型。它通过为每条记录添加有效时间范围(valid_from和va
- 数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
chat2tomorrow
SQL2API数据仓库低代码平台数据仓库架构sql2api大数据低代码数据湖
目录一、概念对比:结构化vs全类型数据二、技术架构对比1.数据仓库架构特点2.数据湖架构特点三、典型应用场景数据仓库适合:数据湖适合:四、数据湖仓一体:趋势还是折中?五、总结:如何选型?结语在大数据时代,“数据仓库”和“数据湖”常被同时提及,甚至被误认为是同一类技术方案。然而,二者在架构设计、数据处理方式、应用场景等方面存在显著差异。本文将从多个维度对比数据仓库与数据湖,帮助你厘清概念,选型不再困
- mysql查询每种产品的销售总额_MDX示例:统计各产品每个季度的销售排名
爱喝冰红茶
ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4销售额排名销售额排名销售额排名销售额排名产品130002200035000140ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4
- 从0到1搭建数据仓库指南
从0到1搭建一个数据仓库(DataWarehouse,DW)是一个复杂但结构化很强的工程。它不仅仅是技术选型,更是业务理解、架构设计、流程规范的结合。以下是一个清晰、分阶段的指南,帮助你系统性地完成搭建:核心原则:以业务驱动为核心:所有设计和开发都围绕解决实际业务问题展开。数据质量是生命线:从源头保证数据的准确性、一致性和完整性。可扩展性和灵活性:设计时要考虑未来数据量增长、新业务需求和技术演进。
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分