sinx~x, arcsinx~x, tanx~x, arctanx~x, 1-cosx~ 1 2 x 2 \dfrac12x^2 21x2
1 − c o s a x = a x 2 2 1-cos^ax=\dfrac{ax^2}{2} 1−cosax=2ax2
e x − 1 e^x-1 ex−1~x,
a x − 1 a^x-1 ax−1~xlna
ln(1+x)~x
( 1 + x ) a − 1 (1+x)^a-1 (1+x)a−1~ax (a≠0)
x-sinx~ 1 6 x 3 \dfrac16x^3 61x3, arcsinx-x~ 1 6 x 3 \dfrac16x^3 61x3, tanx-x~ 1 3 x 3 \dfrac13x^3 31x3, x-arctanx~ 1 3 x 3 \dfrac13x^3 31x3
x-ln(1+x)~ 1 2 x 2 \dfrac12x^2 21x2
n 1 + x ^n\sqrt{1+x} n1+x-1~ 1 n x \dfrac1nx n1x
1 + x − 1 − x \sqrt{1+x}-\sqrt{1-x} 1+x−1−x~x
当n→∞时: l n a n < < n B < < a n < < n ! < < n n ln^an<
其中a,B>0, a>1
sin2x=2sinxcosx, s i n 2 x = 1 2 ( 1 − c o s 2 x ) sin^2x = \dfrac12(1-cos2x) sin2x=21(1−cos2x), c o s 2 x = 1 2 ( 1 + c o s 2 x ) cos^2x = \dfrac12(1+cos2x) cos2x=21(1+cos2x)
c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
s e c x = 1 c o s x secx = \dfrac{1}{cosx} secx=cosx1, c s c x = 1 s i n x cscx = \dfrac{1}{sinx} cscx=sinx1
s i n x c o s x = t a n x \dfrac{sinx}{cosx} = tanx cosxsinx=tanx, c o s x s i n x = c o t x \dfrac{cosx}{sinx} = cotx sinxcosx=cotx, t a n x = s i n x 1 − s i n 2 x = 1 − c o s 2 x c o s x tanx = \dfrac{sinx}{\sqrt{1-sin^2x}} = \dfrac{\sqrt{1-cos^2x}}{cosx} tanx=1−sin2xsinx=cosx1−cos2x
s i n 2 x + c o s 2 x = 1 , 1 + t a n 2 x = s e c 2 x , 1 + c o t 2 x = c s c 2 x sin^2x+cos^2x = 1,\quad1+tan^2x = sec^2x,\quad1+cot^2x = csc^2x sin2x+cos2x=1,1+tan2x=sec2x,1+cot2x=csc2x
s i n 2 x = 1 − c o s 2 x 2 sin^2x=\dfrac{1-cos2x}{2} sin2x=21−cos2x
c o s 2 x = 1 + c o s 2 x 2 cos^2x=\dfrac{1+cos2x}{2} cos2x=21+cos2x
cos(-x)=cosx
sin(-x)=-sin(-x)
( C ) ′ = 0 , ( x a ) = a x a − 1 , ( a x ) ′ = a x l n a (C)' = 0,\quad(x^a) = ax^{a-1},\quad(a^x)' = a^xlna (C)′=0,(xa)=axa−1,(ax)′=axlna
( l o g a x ) ′ = 1 x l n a , ( t a n x ) ′ = s e c 2 x , ( c o t x ) ′ = − c s c 2 x (log_ax)' = \dfrac{1}{xlna},\quad(tanx)' = sec^2x,\quad(cotx)' = -csc^2x (logax)′=xlna1,(tanx)′=sec2x,(cotx)′=−csc2x
( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx,\quad(cscx)' = -cscxcotx (secx)′=secxtanx,(cscx)′=−cscxcotx
( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)' = \dfrac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21
( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)' = -\dfrac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21
( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)' = \dfrac{1}{1+x^2} (arctanx)′=1+x21
( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)' = -\dfrac{1}{1+x^2} (arccotx)′=−1+x21
( e − ( x − t ) 2 ) ′ = − 2 ( x − t ) ( x ′ − 1 ) e − ( x − t ) 2 (e^{-(x-t)^2})'=-2(x-t)(x'-1)e^{-(x-t)^2} (e−(x−t)2)′=−2(x−t)(x′−1)e−(x−t)2
( e a x + b ) n = a n e a x + b (e^{\displaystyle{ax+b}})^n=a^ne^{\displaystyle{ax+b}} (eax+b)n=aneax+b
( s i n ( a x + b ) ) n = a n s i n ( a x + b + π 2 n ) (sin(ax+b))^n=a^nsin(ax+b+\dfrac{\pi}{2}n) (sin(ax+b))n=ansin(ax+b+2πn)
( c o s ( a x + b ) ) n = a n c o s ( a x + b + π 2 n ) (cos(ax+b))^n=a^ncos(ax+b+\dfrac{\pi}{2}n) (cos(ax+b))n=ancos(ax+b+2πn)
( l n ( a x + b ) ) n = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n (ln(ax+b))^n=(-1)^{n-1}a^n \dfrac{(n-1)!}{(ax+b)^n} (ln(ax+b))n=(−1)n−1an(ax+b)n(n−1)!
( 1 a x + b ) n = ( − 1 ) n a n n ! ( a x + b ) n + 1 (\dfrac{1}{ax+b})^n=(-1)^na^n \dfrac{n!}{(ax+b)^{n+1}} (ax+b1)n=(−1)nan(ax+b)n+1n!
一阶线性非齐次微分方程解的公式
y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x d x + C ] y=e^{\displaystyle{-\int{p(x)}dx}}[\int{Q(x)e^{\displaystyle{\int{p(x)dx}}}dx+C}] y=e−∫p(x)dx[∫Q(x)e∫p(x)dxdx+C]
二阶常系数齐次微分方程解的特征
对y’‘+py’+qy=0
特征方程: r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
设r1,r2是特征方程的两个根
不等实根 r 1 ≠ r 2 r_1≠r_2 r1=r2
y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
相等实根 r 1 = r 2 = r r_1=r_2=r r1=r2=r
y = e r x ( C 1 + C 2 x ) y=e^{rx}(C_1+C_2x) y=erx(C1+C2x)
共轭复根 y = e a x ( C 1 c o s B x + C 2 s i n B x ) y=e^{ax}(C_1cosBx+C_2sinBx) y=eax(C1cosBx+C2sinBx)
出现共轭复根的条件是Δ<0即 b 2 − 4 a c < 0 b^2-4ac<0 b2−4ac<0, 此时解为
− b ± b 2 − 4 a c 2 a = − b ± ( − 1 ) ( 4 a c − b 2 ) 2 a \dfrac{-b± \sqrt{b^2-4ac}}{2a}=\dfrac{-b± \sqrt{(-1)(4ac-b^2)}}{2a} 2a−b±b2−4ac=2a−b±(−1)(4ac−b2), 因为 − 1 = i \sqrt{-1}=i −1=i , 所以原式可化为
− b ± 4 a c − b 2 i 2 a \dfrac{-b± \sqrt{4ac-b^2}i}{2a} 2a−b±4ac−b2i
令 a = − b 2 a a=-\dfrac{b}{2a} a=−2ab, b = 4 a c − b 2 2 a b=\dfrac{\sqrt{4ac-b^2}}{2a} b=2a4ac−b2
可得共轭复根 r 1 , 2 = a ± b i r_{1,2}=a±bi r1,2=a±bi
三角函数有理数万能公式
t = t a n x 2 tan\dfrac{x}2 tan2x, sinx = 2 t 1 + t 2 \dfrac{2t}{1+t^2} 1+t22t, cosx = 1 − t 2 1 + t 2 \dfrac{1-t^2}{1+t^2} 1+t21−t2, dx = 2 1 + t 2 d t \dfrac{2}{1+t^2}dt 1+t22dt
点火公式
∫ 0 π 2 s i n 3 ∣ 4 x d x = ∫ 0 π 2 c o s 3 ∣ 4 x = { 2 3 . 1 3 4 . 1 2 . π 2 \int_{0}^{\dfrac{\pi}{2}}{sin^{3|4}xdx}=\int_{0}^{\dfrac{\pi}{2}}{cos^{3|4}x}=\begin{cases}\dfrac{2}{3}.1\\ \\ \dfrac{3}{4}.\dfrac{1}{2}.\dfrac{\pi}{2}\end{cases} ∫02πsin3∣4xdx=∫02πcos3∣4x=⎩⎪⎪⎪⎨⎪⎪⎪⎧32.143.21.2π
积分公式
∫ 1 x d x = l n ∣ x ∣ + C \int\dfrac{1}{x}dx = ln|x|+C ∫x1dx=ln∣x∣+C
∫ a x d x = a x l n a + C ( a > 0 , a ≠ 1 ) \int{a^x}dx = \dfrac{a^x}{lna}+C(a>0,a\not=1) ∫axdx=lnaax+C(a>0,a=1)
∫ e x d x = e x + C \int{e^xdx} = e^x+C ∫exdx=ex+C
∫ s i n x d x = − c o s x + C \int{sinxdx} = -cosx + C ∫sinxdx=−cosx+C
∫ c o s x d x = s i n x + C \int{cosxdx} = sinx+C ∫cosxdx=sinx+C
∫ t a n x d x = − l n ∣ c o s x ∣ + C \int{tanxdx} = -ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
∫ c o t x d x = l n ∣ s i n x ∣ + C \int{cotxdx} = ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int{secxdx} = ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int{cscxdx} = ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
∫ s e c 2 x d x = t a n x + C \int{sec^2xdx} = tanx+C ∫sec2xdx=tanx+C
∫ c s c 2 x d x = − c o t x + C \int{csc^2xdx} = -cotx+C ∫csc2xdx=−cotx+C
∫ 0 d x = C , ∫ 1 d x = ∫ d x = x + C \int0dx = C,\quad\int1dx = \int dx = x+C ∫0dx=C,∫1dx=∫dx=x+C
∫ x a d x = 1 a + 1 x a + 1 + C ( a ≠ − 1 ) \int{x^a}dx = \dfrac{1}{a+1}x^{a+1}+C(a\not=-1) ∫xadx=a+11xa+1+C(a=−1)
∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int{\dfrac{1}{a^2+x^2}dx = \dfrac{1}{a}arctan\dfrac{x}{a}+C} ∫a2+x21dx=a1arctanax+C
∫ 1 a 2 − x 2 d x = 1 2 a l n ∣ a + x a − x ∣ + C {\int\dfrac{1}{a^2-x^2}dx} = \dfrac{1}{2a}ln|\dfrac{a+x}{a-x}|+C ∫a2−x21dx=2a1ln∣a−xa+x∣+C
∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int{\dfrac{1}{\sqrt{a^2-x^2}}dx} = arcsin\dfrac{x}{a} +C ∫a2−x21dx=arcsinax+C
∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ + C \int{\dfrac{1}{\sqrt{x^2\pm a^2}}dx} = ln|x+\sqrt{x^2\pm a^2}|+C ∫x2±a21dx=ln∣x+x2±a2∣+C
∫ t a n 2 x d x = t a n x − x + C \int{tan^2xdx} = tanx-x+C ∫tan2xdx=tanx−x+C
∫ a 2 − x 2 d x = 1 2 x a 2 − x 2 + a 2 2 a r c s i n x a + C \int{\sqrt{a^2-x^2}dx}=\dfrac{1}{2}x \sqrt{a^2-x^2}+\dfrac{a^2}{2}arcsin \dfrac{x}{a}+C ∫a2−x2dx=21xa2−x2+2a2arcsinax+C
∫ a 2 + x 2 = x 2 a 2 + x 2 + a 2 2 l n ∣ x + a 2 + x 2 ∣ + C \int{\sqrt{a^2+x^2}}=\dfrac{x}{2} \sqrt{a^2+x^2}+\dfrac{a^2}{2}ln|x+\sqrt{a^2+x^2}|+C ∫a2+x2=2xa2+x2+2a2ln∣x+a2+x2∣+C
∫ l n ( 1 + x ) d x = ( 1 + x ) l n ( 1 + x ) − x + C \int{ln(1+x)dx}=(1+x)ln(1+x)-x+C ∫ln(1+x)dx=(1+x)ln(1+x)−x+C
∫ c o s x s i n 2 x d x = − 1 s i n x + C \int\dfrac{cosx}{sin^2x}dx=-\dfrac{1}{sinx}+C ∫sin2xcosxdx=−sinx1+C
∫ 1 s i n x = l n ∣ c s c x − c o t x ∣ + C \int\dfrac{1}{sinx}=ln{|cscx-cotx|}+C ∫sinx1=ln∣cscx−cotx∣+C
∫ 1 c o s x = l n ∣ s e c x + t a n x ∣ + C \int\dfrac{1}{cosx}=ln{|secx+tanx|}+C ∫cosx1=ln∣secx+tanx∣+C
∫ 1 t a n x = l n ∣ s i n x ∣ + C \int{\dfrac{1}{tanx}}=ln|sinx|+C ∫tanx1=ln∣sinx∣+C
∫ e x c o s x d x = e x ( s i n x + c o s x ) 2 + C \int{e^xcosx}dx=\dfrac{e^x(sinx+cosx)}{2}+C ∫excosxdx=2ex(sinx+cosx)+C
积分计算圆的公式
∫ 0 a a 2 − x 2 d x = π 4 a 2 \int_{0}^{a}{ \sqrt{a^2-x^2}dx}=\dfrac{\pi}{4}a^2 ∫0aa2−x2dx=4πa2
∫ 0 a 2 a x − x 2 d x = π 4 a 2 \int_{0}^{a}{ \sqrt{2ax-x^2}dx}=\dfrac{\pi}{4}a^2 ∫0a2ax−x2dx=4πa2
∫ 1 1 + x 2 d x = l n ( x + 1 + x 2 ) + C \int{\dfrac{1}{\sqrt{1+x^2}}dx}=ln(x+\sqrt{1+x^2})+C ∫1+x21dx=ln(x+1+x2)+C
与三角函数周期性有关的积分公式
∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \displaystyle\int_{0}^{\dfrac{\pi}{2}}{f(sinx)dx}=\int_{0}^{ \dfrac{\pi}{2}}{f(cosx)dx} ∫02πf(sinx)dx=∫02πf(cosx)dx
∫ 0 π f ( s i n x ) d x = 2 ∫ 0 π 2 f ( s i n x ) d x \displaystyle\int_{0}^{\pi}{f(sinx)dx}=2 \int_{0}^{ \dfrac{\pi}{2}}{f(sinx)dx} ∫0πf(sinx)dx=2∫02πf(sinx)dx
∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π 2 f ( s i n x ) d x \displaystyle\int_{0}^{\pi}{xf(sinx)dx}=\dfrac{\pi}{2} \int_{0}^{ \dfrac{\pi}{2}}{f(sinx)dx} ∫0πxf(sinx)dx=2π∫02πf(sinx)dx
两点确定一条直线 : ( x − x 1 ) / ( x 2 − x 1 ) = ( y − y 1 ) / ( y 2 − y 1 ) (x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1) (x−x1)/(x2−x1)=(y−y1)/(y2−y1)
星形线: x 2 3 + y 2 3 = r 2 3 x^{\dfrac{2}{3}}+y^{\dfrac{2}{3}}=r^{\dfrac{2}{3}} x32+y32=r32
心形线:
r=a(1-cosθ)
r=a(1+cosθ) (a>0)
玫瑰线:
r=asin3θ(a>0)
阿基米德螺旋线:
r=aθ
伯努利双扭线:
极坐标形式:
r 2 = a 2 c o s 2 θ r^2=a^2cos2θ r2=a2cos2θ
r 2 = a 2 s i n 2 θ r^2=a^2sin2θ r2=a2sin2θ
直角坐标形式:
( x 2 + y 2 ) 2 = 2 a 2 ( x 2 − y 2 ) (x^2+y^2)^2=2a^2(x^2-y^2) (x2+y2)2=2a2(x2−y2)
摆线(旋轮线)
x=r(t-sint)
y=r(1-cost)
当t= π \pi π时, x代表摆线图像在x轴得中间点, y代表类圆形的最大值
t代表角度, t= π \pi π代表旋转了180
椭圆方程
x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1
长轴: 2a; 长半轴: a
短轴: 2b; 短半轴: b
焦点: F 1 ( − c , 0 ) , F 2 ( c , 0 ) F_1(-c,0),F_2(c,0) F1(−c,0),F2(c,0)
焦距: ∣ F 1 F 2 ∣ |F_1F_2| ∣F1F2∣
椭圆上任意动点与焦点距离之和为2a,即
∣ P F 1 + P F 2 ∣ = 2 a |PF_1+PF_2|=2a ∣PF1+PF2∣=2a
椭圆面积为 π a b \pi ab πab
形心公式
1 . 一重积分的形心公式
x ‾ = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x \overline{x}=\dfrac{\int_{a}^{b}{xf(x)dx}}{ \int_{a}^{b}{f(x)}dx} x=∫abf(x)dx∫abxf(x)dx
y ‾ = ∫ a b y f ( y ) d y ∫ a b f ( y ) d y \overline{y}=\dfrac{\int_{a}^{b}{yf(y)}dy}{ \int_{a}^{b}{f(y)dy}} y=∫abf(y)dy∫abyf(y)dy
2 . 二重积分的形心公式
x ‾ = ∬ D x d σ S \overline{x}=\dfrac{\iint \limits_{D} {xdσ}}{S} x=SD∬xdσ
y ‾ = ∬ D y d σ S \overline{y}=\dfrac{\iint \limits_{D} {ydσ}}{S} y=SD∬ydσ
3 . 三重积分的形心公式
x ‾ = 1 V ∭ Ω x d V \overline{x}=\dfrac{1}{V}\iiint \limits_{Ω} xdV x=V1Ω∭xdV
y ‾ = 1 V ∭ Ω y d V \overline{y}=\dfrac{1}{V}\iiint \limits_{Ω}ydV y=V1Ω∭ydV
z ‾ = 1 V ∭ Ω z d V \overline{z}=\dfrac{1}{V}\iiint \limits_{Ω}zdV z=V1Ω∭zdV
引力计算公式
F = G m 1 m 2 r 2 F=G \dfrac{m_1m_2}{r^2} F=Gr2m1m2
G称为引力系数
泰勒展开拉格朗日余项公式
l n ( 1 + x ) = ( − 1 ) n − 1 x n n ln(1+x)=\dfrac{(-1)^{n-1}x^n}{n} ln(1+x)=n(−1)n−1xn
− l n ( 1 − x ) = ∑ 1 ∞ x n n -ln(1-x)=\sum\limits_1^∞ \dfrac{x^n}{n} −ln(1−x)=1∑∞nxn
s i n x = ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx=\dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!} sinx=(2n+1)!(−1)nx2n+1
c o s x = ( − 1 ) n x 2 n ( 2 n ) ! cosx=\dfrac{(-1)^nx^{2n}}{(2n)!} cosx=(2n)!(−1)nx2n
1 1 + x = ( − 1 ) n x n \dfrac{1}{1+x}=(-1)^nx^n 1+x1=(−1)nxn
傅里叶级数
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n c o s ( n π t l ) + b n s i n ( n π t l ) ] f(t)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infin}{[a_ncos(\dfrac{n\pi t}{l})+b_nsin(\dfrac{n\pi t}{l})]} f(t)=2a0+n=1∑∞[ancos(lnπt)+bnsin(lnπt)]
a n = 1 l ∫ − l l f ( t ) c o s ( n π t l ) d t , n = 0 , 1 , 2 , 3... a_n=\dfrac{1}{l}\int_{-l}^{l}{f(t)cos(\dfrac{n\pi t}{l})dt}, n=0,1,2,3... an=l1∫−llf(t)cos(lnπt)dt,n=0,1,2,3...
b n = 1 l ∫ − l l f ( t ) s i n ( n u t l d t ) , n = 1 , 2 , 3... b_n=\dfrac{1}{l} \int_{-l}^{l}{f(t)sin(\dfrac{nut}{l}dt)}, n=1,2,3... bn=l1∫−llf(t)sin(lnutdt),n=1,2,3...
斯特林公式 n!= 2 π n ( n e ) n \sqrt{2\pi n}(\dfrac{n}{e})^n 2πn(en)n,
伽马函数
∫ 0 + ∞ x n e − x d x = n ! \int_{0}^{+\infin}{x^{n}e^{-x}dx}=n! ∫0+∞xne−xdx=n!
求幂级数常用公式
∑ n = 0 ∞ x n = 1 1 − x \sum\limits_{n=0}^{\infin}x^n=\dfrac{1}{1-x} n=0∑∞xn=1−x1(-1,1)
∑ n = 0 ∞ ( n + 1 ) x n = 1 ( 1 − x ) 2 \sum\limits_{n=0}^{\infin}{(n+1)x^n=\dfrac{1}{(1-x)^2}} n=0∑∞(n+1)xn=(1−x)21(-1,1)
∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) x n = 2 ( 1 − x ) 3 \sum\limits_{n=0}^{\infin}{(n+2)(n+1)x^n=\dfrac{2}{(1-x)^3}} n=0∑∞(n+2)(n+1)xn=(1−x)32(-1,1)
∑ n = 0 ∞ x n + 1 n + 1 = − l n ( 1 − x ) \sum\limits_{n=0}^{\infin}{\dfrac{x^{n+1}}{n+1}}=-ln(1-x) n=0∑∞n+1xn+1=−ln(1−x)[-1,1)
∑ n = 0 ∞ x 2 n + 1 2 n + 1 = 1 2 l n 1 + x 1 − x \sum\limits_{n=0}^{\infin}{ \dfrac{x^{2n+1}}{2n+1}}=\dfrac{1}{2}ln{\dfrac{1+x}{1-x}} n=0∑∞2n+1x2n+1=21ln1−x1+x(-1,1)
∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = a r c t a n x \sum\limits_{n=0}^{\infin}{ \dfrac{(-1)^{n}x^{2n+1}}{2n+1}}=arctanx n=0∑∞2n+1(−1)nx2n+1=arctanx[-1,1]
∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = s i n x \sum\limits_{n=0}^{\infin}{ \dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!}}=sinx n=0∑∞(2n+1)!(−1)nx2n+1=sinx
∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = c o s x \sum\limits_{n=0}^{\infin}{ \dfrac{(-1)^{n}x^{2n}}{(2n)!}}=cosx n=0∑∞(2n)!(−1)nx2n=cosx
∑ n = 0 ∞ x n n ! = e x \sum\limits_{n=0}^{\infin}{ \dfrac{x^{n}}{n!}}=e^{x} n=0∑∞n!xn=ex
格林公式
∫ ( + C ) P ( x , y ) d x + Q ( x , y ) d y = ∬ ( σ ) ( σ Q σ x − σ P σ y ) d x d y \int\limits_{(+C)}P(x,y)dx+Q(x,y)dy=\iint\limits_{(σ)}(\dfrac{σQ}{σx}-\dfrac{σP}{σy})dxdy (+C)∫P(x,y)dx+Q(x,y)dy=(σ)∬(σxσQ−σyσP)dxdy
斯托克斯公式
∫ L P d x + Q d y + R d z = ∬ ∑ [ c o s a c o s B c o s r ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] d s \int \limits_{L} {Pdx+Qdy+Rdz}=\iint \limits_{\sum} \begin{bmatrix}cosa&cosB&cosr\\\dfrac{\partial{}}{\partial{x}}&\dfrac{\partial{}}{\partial{y}}&\dfrac{\partial{}}{\partial{z}}\\P&Q&R\end{bmatrix}ds L∫Pdx+Qdy+Rdz=∑∬⎣⎢⎡cosa∂x∂PcosB∂y∂Qcosr∂z∂R⎦⎥⎤ds
高斯公式
∬ ∑ P d y d z + Q d z d x + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V \iint \limits_{\sum{}} {Pdydz+Qdzdx+Rdxdy}=\iiint \limits_{Ω} {(\dfrac{\partial{P}}{ \partial{x}}+\dfrac{\partial{Q}}{ \partial{y}}+\dfrac{\partial{R}}{ \partial{z}})dV} ∑∬Pdydz+Qdzdx+Rdxdy=Ω∭(∂x∂P+∂y∂Q+∂z∂R)dV
a 2 + b 2 ≥ 2 a b a^2+b^2≥2ab a2+b2≥2ab
x 1 + x < l n ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) \displaystyle\frac{x}{1+x}
s i n x < x < t a n x sinx
a 1 a 2 . . . a n n ≤ a 1 + a 2 + . . . + a n n \displaystyle\sqrt[\displaystyle{n}]{a_1a_2...a_n}≤\displaystyle\frac{a_1+a_2+...+a_n}{n} na1a2...an≤na1+a2+...+an
e x ≥ 1 + x \displaystyle {e^{\displaystyle{x}}}≥1+x ex≥1+x
l n x ≤ x − 1 lnx≤x-1 lnx≤x−1
伴随矩阵
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} ∣A∗∣=∣A∣n−1
( A ∗ ) − 1 = ( A − 1 ) ∗ = A ∣ A ∣ (A^*)^{-1}=(A^{-1})^*=\dfrac{A}{|A|} (A∗)−1=(A−1)∗=∣A∣A
( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A∗)T=(AT)∗
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)∗=kn−1A∗
( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 2 ) (A^*)^*=|A|^{n-2}A(n≥2) (A∗)∗=∣A∣n−2A(n≥2)
可逆矩阵
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})T (AT)−1=(A−1)T
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A−1)−1=A
∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\dfrac{1}{|A|} ∣A−1∣=∣A∣1
∣ A − 1 ∣ = ∣ A ∗ ∣ ∣ A ∣ |A^{-1}|=\dfrac{|A^*|}{|A|} ∣A−1∣=∣A∣∣A∗∣
分块矩阵
[ A O O B ] = [ A C O B ] = [ A O C B ] = ∣ A ∣ ∣ B ∣ \begin{bmatrix}A&O\\O&B\end{bmatrix}=\begin{bmatrix}A&C\\O&B\end{bmatrix}=\begin{bmatrix}A&O\\C&B\end{bmatrix}=|A| |B| [AOOB]=[AOCB]=[ACOB]=∣A∣∣B∣
[ O A B O ] = [ C A B O ] = [ O A B C ] = ( − 1 ) m . n ∣ A ∣ ∣ B ∣ \begin{bmatrix}O&A\\B&O\end{bmatrix}=\begin{bmatrix}C&A\\B&O\end{bmatrix}=\begin{bmatrix}O&A\\B&C\end{bmatrix}=(-1)^{m.n}|A| |B| [OBAO]=[CBAO]=[OBAC]=(−1)m.n∣A∣∣B∣(其中A代表m阶矩阵,B代表n阶矩阵)
已知分块矩阵求逆矩阵
A = [ A 1 0 0 A 2 ] A=\begin{bmatrix}A_1&0\\0&A_2\end{bmatrix} A=[A100A2]且A1,A2可逆, 则 A − 1 = [ A 1 − 1 0 0 A 2 − 1 ] A^{-1}=\begin{bmatrix}A_1^{-1}&0\\0&A_2^{-1}\end{bmatrix} A−1=[A1−100A2−1]
另外一种情况:
A = [ 0 A 1 A 2 0 ] , 则 A − 1 = [ 0 A 2 − 1 A 1 − 1 0 ] A=\begin{bmatrix}0&A_1\\A_2&0\end{bmatrix},则A^{-1}=\begin{bmatrix}0&A_2^{-1}\\A_1^{-1}&0\end{bmatrix} A=[0A2A10],则A−1=[0A1−1A2−10]
相似矩阵
A = P − 1 B P A=P^{-1}BP A=P−1BP
X~N(0,1)(标准正态分布)
X~N( u , σ 2 u,σ^2 u,σ2)(正态分布)
概率密度函数: f ( x ) = ( e − ( x − u ) 2 2 σ 2 2 π σ ) f(x)=(\dfrac{e^{-\dfrac{(x-u)^2}{2σ^2}}}{ \sqrt{2\pi}σ}) f(x)=(2πσe−2σ2(x−u)2)
二维正态分布
联合概率密度:
g ( x , y ) = 1 2 π σ 1 σ 2 1 − p 2 e x p g(x,y)=\dfrac{1}{2\piσ_1σ_2 \sqrt{1-p^2}}exp g(x,y)=2πσ1σ21−p21exp
( − 1 2 ( 1 − p 2 ) [ ( x − u 1 ) 2 σ 1 2 − 2 p ( x − u 1 ) ( y − u 2 ) σ 1 σ 2 + ( y − u 2 ) 2 σ 2 2 ] ) (-\dfrac{1}{2(1-p^2)}[\dfrac{(x-u_1)^2}{σ_1^2}-2p \dfrac{(x-u_1)(y-u_2)}{σ_1σ_2}+\dfrac{(y-u_2)^2}{σ_2^2}]) (−2(1−p2)1[σ12(x−u1)2−2pσ1σ2(x−u1)(y−u2)+σ22(y−u2)2])
超几何分布
公式: C M k C N − M n − k C N M \dfrac{C_M^kC_{N-M}^{n-k}}{C_N^M} CNMCMkCN−Mn−k
指数分布
分布函数: F ( x ) = { 1 − e − λ x 0 ≤ x 0 x < 0 F(x)=\begin{cases}1-e^{-λx}&0≤x\\0&x<0\end{cases} F(x)={1−e−λx00≤xx<0
概率密度函数 f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x)=\begin{cases}λe^{-λx}&x>0\\0&x≤0\end{cases} f(x)={λe−λx0x>0x≤0
均匀分布
X~U(a,b)
分布函数: F ( x ) = { 0 x < a x − a b − a a ≤ x < b 1 b ≤ x F(x)=\begin{cases}0&xF(x)=⎩⎪⎪⎨⎪⎪⎧0b−ax−a1x<aa≤x<bb≤x
概率密度函数: f ( x ) = { 1 b − a a < x < b 0 其 它 f(x)=\begin{cases}\dfrac{1}{b-a}&a
二项分布
X~B(n,p)
分布律: P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1−p)n−k
泊松分布
P(X=k)= λ k k ! e − λ \dfrac{λ^k}{k!}e^{-λ} k!λke−λ, k>0
P(X1+X2=k)= ( X 1 + X 2 ) k k ! e − ( X 1 + X 2 ) \dfrac{(X1+X2)^k}{k!}e^{-(X1+X2)} k!(X1+X2)ke−(X1+X2)
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-∞}^{+∞}{xf(x)dx} E(X)=∫−∞+∞xf(x)dx
如果是E( X 2 X^2 X2)的话, 则
E ( X 2 ) = ∫ − ∞ + ∞ x 2 f ( x ) d x E(X^2)=\int_{-\infin}^{+\infin}{x^2f(x)dx} E(X2)=∫−∞+∞x2f(x)dx,
所以可知左边X决定右边f(x)左边的X, 与f(x)概率密度无关
E ( X ) = ∑ k = 1 ∞ k . P ( X = k ) E(X)=\sum\limits_{k=1}^{∞}k.P(X=k) E(X)=k=1∑∞k.P(X=k)
离散型
E ( X ) = ∑ i = 1 ∞ x i P i E(X)=\sum_{i=1}^{∞}x_iP_i E(X)=∑i=1∞xiPi
E [ g ( x ) ] = ∑ i = 1 ∞ g ( x i ) P i E[g(x)]=\sum_{i=1}^{\infin}g(x_i)P_i E[g(x)]=∑i=1∞g(xi)Pi
E [ g ( x , y ) ] = ∑ i ∑ j g ( x i , y i ) P i j E[g(x,y)]=\sum_i\sum_j{g(x_i,y_i)P_{ij}} E[g(x,y)]=∑i∑jg(xi,yi)Pij
连续型
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x E(x)=\int_{-\infin}^{\infin}{xf(x)dx} E(x)=∫−∞∞xf(x)dx
E [ g ( x ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E[g(x)]=\int_{-\infin}^{+\infin}{g(x)f(x)dx} E[g(x)]=∫−∞+∞g(x)f(x)dx
E [ g ( x , y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E[g(x,y)]=\int_{-\infin}^{+\infin} \int_{-\infin}^{+\infin}{g(x,y)f(x,y)dxdy} E[g(x,y)]=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
期望的性质
E ( C ) = C E(C)=C E(C)=C
E(aX)=aE(X)
E(X+Y)=E(X)+E(Y)
E(aX+bY)=aE(X)+bE(Y)
XY独立→E(XY)=E(X)E(Y)
方差=平方的期望-期望的平方
D ( X ) = E [ ( X ‾ − E ( X ) ) 2 ] D(X)=E[(\overline{X}-E(X))^2] D(X)=E[(X−E(X))2]
D ( X ) = E ( X 2 ) − E 2 ( X ) D(X)=E(X^2)-E^2(X) D(X)=E(X2)−E2(X)
1 . E(X)=u, 则 E ( X ‾ ) = u E(\overline{X})=u E(X)=u
2 . D(X)= σ 2 σ^2 σ2, 则 D ( X ‾ ) = σ 2 n D(\overline{X})=\dfrac{σ^2}{n} D(X)=nσ2
3 . D(X)= σ 2 σ^2 σ2, 则 E ( S 2 ) = σ 2 E(S^2)=σ^2 E(S2)=σ2
c o v ( X , Y ) = p D ( X ) D ( Y ) cov(X,Y)=p \sqrt{D(X)D(Y)} cov(X,Y)=pD(X)D(Y)
c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) cov(X,Y)=E(XY)-E(X)E(Y) cov(X,Y)=E(XY)−E(X)E(Y)可知方差是协方差的特例, 因为方差=平方的期望-期望的平方
当两变量相互独立时, 根据公式2可知协方差的值为0
二项分布B(n,p) 期望: np 方差: np(1-p)
泊松分布P(λ) 期望: λ 方差: λ
几何分布G§ 期望: 1 p \dfrac{1}{p} p1 方差: 1 − p p 2 \dfrac{1-p}{p^2} p21−p
均匀分布U(a,b) 期望: a + b 2 \dfrac{a+b}{2} 2a+b 方差: ( b − a ) 2 12 \dfrac{(b-a)^2}{12} 12(b−a)2
指数分布E(λ) 期望: 1 λ \dfrac{1}{λ} λ1 方差: 1 λ 2 \dfrac{1}{λ^2} λ21
正态分布N(u, σ 2 σ^2 σ2) 期望: u 方差: σ 2 σ^2 σ2
x 2 分 布 x 2 ( n ) x^2分布x^2(n) x2分布x2(n) 期望: n 方差: 2n
t分布t(n) 期望: 0 方差: n n − 2 \dfrac{n}{n-2} n−2n
正态分布→标准正态分布→卡方分布→F分布
t分布: X Y / n \dfrac{X}{ \sqrt{Y/n}} Y/nX
X^2分布(卡方分布):是n个标准正态分布的平方和F分布:
F = X / n Y / m ∼ F ( n , m ) F=\dfrac{X/n}{Y/m} \sim F(n,m) F=Y/mX/n∼F(n,m)一个卡方分布/其自由度 / 另一个卡方分布/其自由度