- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 云原生API Gateway:连接微服务的桥梁
AI云原生与云计算技术学院
云原生gateway微服务ai
云原生APIGateway:连接微服务的桥梁关键词:云原生、API网关、微服务架构、服务治理、流量管理、服务网格、DevOps摘要:本文深入探讨云原生环境下API网关的核心原理与实践应用,解析其在微服务架构中作为统一入口的关键作用。通过详细阐述API网关的核心功能、技术架构、算法原理及数学模型,结合Kubernetes实战案例演示流量管理、安全防护、服务编排等核心能力。同时分析典型应用场景,推荐前
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- AI人工智能领域,Stable Diffusion掀起的技术风暴
AI大模型应用工坊
人工智能stablediffusionai
AI人工智能领域,StableDiffusion掀起的技术风暴关键词:AI人工智能、StableDiffusion、技术风暴、图像生成、扩散模型摘要:本文深入探讨了AI人工智能领域中StableDiffusion所掀起的技术风暴。首先介绍了StableDiffusion的背景,包括其目的、预期读者和文档结构等。详细阐述了核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。对核心算法原
- AIGC 领域 AI 写作如何实现智能内容推荐
SuperAGI2025
AIGC人工智能ai
AIGC领域AI写作如何实现智能内容推荐关键词:AIGC、AI写作、智能内容推荐、推荐算法、用户画像摘要:本文聚焦于AIGC领域中AI写作的智能内容推荐实现。首先介绍了该主题的背景,包括目的、预期读者等内容。接着阐述了核心概念与联系,如AIGC、AI写作、智能内容推荐等概念及其关联。详细讲解了核心算法原理,包括协同过滤、基于内容的推荐等,并给出Python代码示例。探讨了相关数学模型和公式,通过具
- 华为OD机试 2025B卷 - 字符串加密 (C++ & Python & JAVA & JS & C语言)
YOLO大师
华为od华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解2025B卷100分题型题目描述给你一串未加密的字符串str,通过对字符串的每一个字母进行改变来实现加密,加密方式是在每一个字母str[i]偏移特定数组元素a[i]的量,数组a前三位已经赋值:a[0]=1,a[1]=2,a[2]=4。当i>=3时,数组元素a[i]=a[i-1]+a[i-2]+a[i-3]。例如:
- 俄罗斯方块AI深度解析:从算法原理到实现细节
智算菩萨
Python小游戏项目实战人工智能算法
俄罗斯方块AI深度解析:从算法原理到实现细节前言俄罗斯方块,这个诞生于1984年的经典游戏,至今仍然是人工智能研究领域的热门课题。当简单的几何形状在网格中不断下落时,看似简单的规则背后却隐藏着复杂的策略决策问题。本文将深入剖析一个基于Python实现的俄罗斯方块AI系统,探讨其如何通过精巧的算法设计实现近乎完美的自动游戏表现。游戏状态的数字化抽象在构建任何游戏AI之前,我们首先需要将人类直观理解的
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- 专知智库数据场景生态:开启全球数字文明新纪元——数据零件×场景编码×SEI指数构建下一代数字经济基座
人形机器人专利池研究中心
数据场景架构师数据零件架构师数据场景生态人工智能数据场景架构师算法大数据
一、传统数字经济的“柏林墙困境”全球产业痛点扫描:数据孤岛化:企业间数据流通成本高达交易额37%(麦肯锡2024)价值黑箱化:85%数据资产无法量化定价(普华永道审计报告)技术碎片化:同类算法重复开发年耗$1800亿破局宣言:专知智库提出“可拆解、可组合、可交易”三可原则,以数据零件+场景编码+SEI计量重构全球数字基础设施二、三大基座:数字经济的新操作系统1.数据零件(DP):技术场景最小单元革
- 算法题目记录
iamwiam
java
数据空间研究院-后端试题题目一:线程安全的链表描述:实现题目二:自定义注解与反射描述:实现题目三:简化的消息队列描述实现题目一:线程安全的链表描述:实现一个线程安全的链表类ThreadSafeLinkedList,支持以下操作:add(Telement)-在链表末尾添加元素。remove(Telement)-移除链表中的指定元素。contains(Telement)-检查链表中是否包含指定元素。要
- 10.6 ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt机器学习深度学习人工智能语言模型
ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%1.实战构造私有的微调数据集在微调大模型时,数据质量直接决定模型效果。本节将手把手教你如何构建高质量的私有微调数据集。1.1使用ChatGPT自动设计生成训练数据的Prompt核心思路:通过ChatGPT生成符合任务需求的样本数据,降低人工标注成本。步骤示例(以生成客服对话数据为例):fromlangchain.prompts
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- 算法 堆与堆排序
堆的定义与分类堆是一种特殊的完全二叉树,通常分为两种类型:大顶堆(大根堆):每个节点的值都大于或等于其子节点的值。小顶堆(小根堆):每个节点的值都小于或等于其子节点的值。堆的性质结构性:堆是一棵完全二叉树,即除了最后一层外,其他层的节点都是满的,且最后一层的节点从左到右填充。有序性:堆中每个节点的值都满足特定的顺序关系(大于或小于子节点)。堆的存储数组索引0通常作为堆的根节点。对于索引为i的节点,
- python函数
四、函数定义P.1函数定义把一段实现某个功能的完整代码,用一个函数封装,后期可以通过调用函数名,实现依次编写,多次调用的目的函数,可以等价于我们初高中学过的f(x),f是运算法则,也就是代码函数中对应的代码执行块,每有一个x对应经过f运算之后得到一个值,如f(x)对应的是让x乘3加2,每有一个x进入f中便会得到一个值。高中对应的函数三要素是,定义域、运算法则、值域,而编程中的函数也有三要素,分别为
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 单片机:实现国密SM2算法(附完整源码)
源代码大师
单片机实战教程单片机算法嵌入式硬件
单片机:实现国密SM2算法主要功能模块1.定义椭圆曲线参数2.大数运算(示例:大数比较)3.椭圆曲线点定义4.密钥生成5.加密与解密注意事项实现国密SM2算法在单片机上的完整源码涉及多个模块,包括椭圆曲线运算、SM3哈希函数、密钥生成、加密解密以及签名验证等。以下是一个基于C语言的简化版SM2实现示例,适用于资源有限的单片机环境。请注意,实际应用中可能需要根据具体单片机的性能和资源进行优化。主要功
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 你懂安全优化SSL嘛?
巴依老爷coder
安全安全ssl网络协议
一文带你了解SSL全部内容CIA?SSL概述加密算法对比数字签名与证书RSA加密算法代码实操1.更完善的错误处理2.证书验证3.资源管理改进常见的面试问题CIA?在信息安全领域,CIA(保密性、完整性、可用性)是核心原则,各有其实现方法与面临的威胁:保密性:实现方法:运用加密技术,对称加密(如AES)适合大量数据快速加密,非对称加密(如RSA)用于密钥交换与数字签名;借助访问控制手段,像基于角色的
- 【Python 算法零基础 4.排序 ⑦ 桶排序】
L_cl
Python常见算法排序算法数据结构算法
草木不争高,争的是生生不息——25.5.26选择排序回顾①遍历数组:从索引0到n-1(n为数组长度)。②每轮确定最小值:假设当前索引i为最小值索引min_index。从i+1到n-1遍历,若找到更小元素,则更新min_index。③交换元素:若min_index≠i,则交换arr[i]与arr[min_index]。'''①遍历数组:从索引 0 到 n-1(n 为数组长度)。②每轮确定最小值:假设
- 【Python 算法零基础 4.排序 ⑥ 快速排序】
L_cl
Python常见算法排序算法算法
既有锦绣前程可奔赴,亦有往日岁月可回首——25.5.25选择排序回顾①遍历数组:从索引0到n-1(n为数组长度)。②每轮确定最小值:假设当前索引i为最小值索引min_index。从i+1到n-1遍历,若找到更小元素,则更新min_index。③交换元素:若min_index≠i,则交换arr[i]与arr[min_index]。'''①遍历数组:从索引 0 到 n-1(n 为数组长度)。②每轮确定
- Apple A 系列芯片 Camera 架构解析:ISP + NPU 图像管线协同机制全景实战
观熵
影像技术全景图谱:架构调优与实战架构接口隔离原则影像Camera
AppleA系列芯片Camera架构解析:ISP+NPU图像管线协同机制全景实战关键词:AppleA系列、图像信号处理器(ISP)、神经网络引擎(NPU)、SmartHDR、DeepFusion、图像协同计算、图像路径优化、拍照性能、图像延迟控制、AppleSilicon摘要:苹果在A系列芯片中持续深化ISP与NPU的协同架构,实现图像质量、算法速度与功耗的高度平衡。从A11到A17Pro,App
- AD7780BRUZ-REEL ADI 24位低功耗ADC转换器 高精度传感器信号链一站式解决方案
AD7780BRUZ-REEL(ADI)产品解析与推广文案一、产品定位AD7780BRUZ-REEL是AnalogDevices(ADI)推出的低功耗、24位Σ-Δ型ADC(模数转换器),专为高精度传感器信号采集设计,集成PGA(可编程增益放大器)和基准电压源,适用于工业、医疗、便携设备等对功耗和精度要求严苛的场景。二、核心功能与参数特性参数/性能分辨率24位无失码,支持高精度测量采样率16.6H
- 操作系统——磁盘调度算法代码实现
十指流玉
笔记操作系统
磁盘调度算法先来先服务算法(FCFS):先来先服务算法根据访问磁盘的先后顺序进行,由当前磁头位置移动到首先到达缓存区的磁盘。优点:公平/简单,该算法的平均寻道时间相对较长。voidFCFS(){intsum=0;intstart;intFind[11];cout>start;cout>Find[i];}cout";for(inti=1;i";}cout>start;cout>Find[i].loc
- 【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
运器123
AI大模型支持向量机机器学习人工智能ai大数据AI编程算法
一、算法核心思想支持向量机(SVM)是一种强大的监督学习算法,核心思想是通过寻找最优超平面实现分类或回归:分类目标:找到能最大化两类数据间隔的超平面回归目标:找到包含最多数据点的ε带关键概念图解超平面:w·x+b=0/\/\+1|支持向量|-1|●●||●●||●●||_________________|最大间隔(margin)二、数学原理与优化问题1.线性可分情况目标函数:\min_{w,b}\
- JVM垃圾回收机制深度解析
真实的菜
jvmjvm
️JVM垃圾回收机制深度解析文章目录️JVM垃圾回收机制深度解析垃圾判定算法引用计数法可达性分析算法垃圾回收算法️标记-清除算法复制算法标记-整理算法️分代收集算法️常见垃圾收集器Serial收集器⚡ParNew收集器Parallel收集器CMS收集器G1收集器⚡垃圾回收调优常用JVM调优参数️调优工具使用:JConsole、VisualVMJConsoleVisualVM实战案例分析案例一:内存
- 【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
运器123
AI大模型python开发语言人工智能AIAI编程算法散列表
以下是五大核心算法的重点解析和LeetCode经典题解,包含最优解法和模板代码:一、数组操作(双指针/滑动窗口)核心思想:通过索引指针高效遍历与操作数组1.移动零(No.283)defmoveZeroes(nums):slow=0forfastinrange(len(nums)):ifnums[fast]!=0:nums[slow],nums[fast]=nums[fast],nums[slow]
- 暑假算法日记第三天
目标:刷完灵神专题训练算法题单阶段目标:【算法题单】滑动窗口与双指针LeetCode题目:3439.重新安排会议得到最多空余时间I2134.最少交换次数来组合所有的1II1297.子串的最大出现次数2653.滑动子数组的美丽值1888.使二进制字符串字符交替的最少反转次数567.字符串的排列438.找到字符串中所有字母异位词30.串联所有单词的子串2156.查找给定哈希值的子串其他:今日总结往期打
- 华为OD机试 2025B卷 - 货币单位转换(C++&Python&JAVA&JS&C语言)
YOLO大师
华为odc++python华为OD机试华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解2025B卷100分题型题目描述记账本上记录了若干条多国货币金额,需要转换成人民币分(fen),汇总后输出。每行记录一条金额,金额带有货币单位,格式为数字+单位,可能是单独元,或者单独分,或者元与分的组合。要求将这些货币全部换算成人民币分(fen)后进行汇总,汇总结果仅保留整数,小数部分舍弃。元和分的换算关系都是
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro