什么是欧拉公式

欧拉公式在不同的学科中有着不同的含义。

复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,

e是自然对数的底,

i是虚数单位。

拓扑学中,在任何一个规则球面地图上,

用 R记区域个数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,

这就是欧拉定理 ,它于1640年由笛卡尔首先给出证明,后来欧拉于 1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。

他被称为世界上最简洁的公式什么是欧拉公式_第1张图片

中文名     欧拉公式          |          外文名     Euler's formula

别    名     欧拉方程          |          提出者     莱昂哈德·欧拉

提出时间     1752年         |           适用领域​​​​​​​     莱昂哈德·欧拉,三角形,拓扑学,统计学、

你可能感兴趣的:(数学建模,正则表达式)