HDU4836 The Query on the Tree(树状数组&&LCA)

由于智力的问题,百度之星完全lu不动。。开场看第一题根据题目给的条件我觉得一定是可以构造出来的,题目给的意思颇有鸽巢原理的感觉,于是觉得开场第一题应该就是智力构造题了,想了半个小时,发现完全想不动,于是只能放弃了去想后面的题。

然后看第二题的数据结构,树上的询问,支持点修改,询问子树和,还有换根,然后心里想,我擦,这不是LCT么,但是我没学呀,然后细心的翻出之前打印的论文研读了很久,发现普通的LCT只能解决询问树路径上的东西,然后看论文上写如果支持子树操作的话就需要Euler-tour-tree什么的,想了一个多小时都想不到怎么用LCT,最后只能作罢。

然后看了三四题觉得也没什么思路,就去看第五题了,我感觉第五题是有思路的,对两个串建自动机,然后dp[i]定义为状态i的胜率,那么每个状态有两个转移边,转移到xi以及xj状态,那么dp[i]=1/2(dp[xi]+dp[xj]),然后边界就是我方胜利的状态为1,敌方胜利的状态为0,然后我希望能够通过发现图里深层的关系以期避免高斯消元,但是怎么搞都觉得是要高斯消元的,但是因为题目输出的是最简分数,分数版本的高斯消元我感觉我是写不粗来的,然后就只能作罢了。赛后听英姐说用LCM去消,我就明白了其实就是消元的时候按照高中学的那种消去法就好了,不要搞什么小数出来,有空写写看下能不能过。。

最后只能回头去看最多人过的第二题了,在纸上画了一下发现规律了,将原来的树保持不变,修改的时候按照传统的树状数组的点更段询就可以了,关键是在询问的时候,如果当前 询问的点是当前根的父亲,那么答案应该是 所有权值的和-(询问点包含根的那棵子树的和),否则就直接询问就可以了。要写一个LCA来求出询问点到根的路径的下一个点,然后每次询问都是logn的。

好久没写代码了呢,回头搜下看下第一题是怎么作粗来的。。

#pragma warning(disable:4996)

#include <iostream>

#include <cstring>

#include <string>

#include <vector>

#include <cstdio>

#include <algorithm>

#include <cmath>

using namespace std;



#define maxn 10050

#define maxlogv 16

int bit[maxn];

int n;



void add(int x, int v)

{

	while (x <= n){

		bit[x] += v;

		x += x&(-x);

	}

}



int query(int x)

{

	int ret = 0;

	while (x > 0){

		ret += bit[x];

		x -= x&(-x);

	}

	return ret;

}





int first[maxn];

int nxt[2 * maxn];

int vv[2 * maxn];

int e;

void addEdge(int u, int v)

{

	vv[e] = v; nxt[e] = first[u];

	first[u] = e++;

}





int pre[maxn];

int post[maxn];

vector<int> G[maxn];

int val[maxn];

int dfs_clock;

int p[maxn][maxlogv];

int dep[maxn];





void dfs(int u,int fa,int d)

{

	p[u][0] = fa; dep[u] = d;

	pre[u] = ++dfs_clock; int v;

	for (int i = first[u]; i !=-1; i=nxt[i]){

		v = vv[i];

		if (!pre[v]) dfs(v,u,d+1);

	}

	post[u] = dfs_clock;

}



void setRoot(int root)

{

	memset(pre, 0, sizeof(pre));

	memset(post, 0, sizeof(post));

	memset(p, -1, sizeof(p));

	memset(dep, 0, sizeof(dep));

	dfs_clock = 0;

	dfs(root,-1,0);

	memset(bit, 0, sizeof(bit));

	for (int i = 1; i <= n; i++){

		add(pre[i], val[i]);

	}

}



void getp()

{

	for (int j = 0; j + 1 <= maxlogv; j++){

		for (int i = 1; i <= n; i++){

			if (p[i][j] != -1){

				p[i][j + 1] = p[p[i][j]][j];

			}

		}

	}

}



bool isFather(int u, int v)

{

	return pre[u] <= pre[v] && pre[v] <= post[u];

}



int findPostFather(int u, int v)

{

	int gap = dep[v] - dep[u];

	gap -= 1;

	for (int i = maxlogv; i >= 0; i--){

		if ((gap >> i) & 1){

			v = p[v][i];

		}

	}

	return v;

}



int main()

{

	int T; cin >> T; int ca = 0;

	while (T--)

	{

		scanf("%d", &n);

		int ui, vi;

		memset(first, -1, sizeof(first)); e = 0;

		for (int i = 0; i < n - 1; i++){

			scanf("%d%d", &ui, &vi);

			addEdge(ui, vi);

			addEdge(vi, ui);

		}

		int tot = 0;

		for (int i = 1; i <= n; i++){

			scanf("%d", val + i);

			tot += val[i];

		}

		setRoot(1);

		int root = 1;

		getp();

		int m; scanf("%d", &m);

		char s[12];

		printf("Case #%d:\n", ++ca);

		for (int i = 0; i < m; i++){

			scanf("%s",s);

			if (s[0] == 'Q'){

				scanf("%d", &ui);

				if (ui == root) {

					printf("%d\n", tot); continue;

				}

				if (isFather(ui, root)){

					vi = findPostFather(ui,root);

					printf("%d\n", tot - (query(post[vi]) - query(pre[vi] - 1)));

				}

				else{

					printf("%d\n", query(post[ui]) - query(pre[ui] - 1));

				}

			}

			else if (s[0] == 'C'){

				scanf("%d%d", &ui, &vi);

				add(pre[ui], vi - val[ui]);

				tot += vi - val[ui];

				val[ui] = vi;

			}

			else{

				scanf("%d", &ui);

				root = ui;

			}

		}

	}

	return 0;

}

 

你可能感兴趣的:(query)