企业级智能对话AI助手(一)技术方案设计

一、系统需求分析

1.1 核心业务场景
意图类型 业务描述 关键实体 对接系统
OA请假审批 员工休假申请处理 用户ID、起止日期、请假事由 OA系统
订单状态查询 客户订单跟踪服务 订单ID、用户ID 订单管理系统
库存实时查询 商品存货信息展示 商品ID、仓库名称 WMS系统
销售价格查询 多渠道价格展示 商品ID、销售渠道、用户ID 价格中心系统
1.2 技术指标要求
性能要求
响应时间<500ms
准确率>95%
并发量1000+/sec
扩展要求
支持动态意图扩展
支持多语言实体识别
分布式部署能力

二、系统架构设计

2.1 整体架构
监控体系
业务系统层
智能处理层
接入层
Grafana
Prometheus
预警系统
ELK日志
OA系统
订单系统
仓储系统
价格系统
NLU服务集群
NER服务集群
规则引擎
负载均衡
API Gateway
2.2 核心模块分解
class SystemComponents:
    """ 组件功能说明 """
    
    @staticmethod
    def nlu_service():
        """ 意图识别服务
        - 基于BERT的微调模型
        - 支持在线热更新
        - 多模型版本管理
        """
    
    @staticmethod
    def ner_service():
        """ 实体识别服务
        - BiLSTM-CRF序列标注
        - 领域自适应训练
        - 实体归一化处理
        """
    
    @staticmethod
    def dialog_manager():
        """ 对话管理引擎
        - 多轮对话状态跟踪
        - 槽位填充校验
        - 异常恢复机制
        """

三、数据流转设计

3.1 数据处理流程
用户 网关 NLU NER 业务系统 原始请求文本 结构化请求 意图类型+文本 结构化参数 业务响应 用户 网关 NLU NER 业务系统
3.2 数据格式规范
// 请求数据格式
{
  "session_id": "CONV-20240315-001",
  "text": "帮我查订单ID20240315001的状态",
  "context": {
    "user_id": "U1001",
    "channel": "微信小程序"
  }
}

// 响应数据格式
{
  "intent": "订单查询",
  "entities": {
    "order_id": "20240315001",
    "user_id": "U1001"
  },
  "response": {
    "status": "已发货",
    "logistics": "SF123456789",
    "timestamp": "2024-03-15 14:30:00"
  },
  "dialog_state": {
    "next_action": "confirm",
    "missing_slots": []
  }
}

四、核心实现代码

4.1 服务端实现
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn

app = FastAPI()

class NLURequest(BaseModel):
    text: str
    context: dict = {}

class NLUResponse(BaseModel):
    intent: str
    entities: dict
    response: dict

@app.post("/nlu", response_model=NLUResponse)
async def process_query(request: NLURequest):
    """ 统一NLU处理接口 """
    # 1. 意图识别
    intent = IntentClassifier.predict(request.text)
    
    # 2. 实体提取
    entities = EntityRecognizer.extract(request.text, intent)
    
    # 3. 业务系统对接
    biz_response = BusinessAdapter.call(intent, entities)
    
    # 4. 生成对话状态
    dialog_state = DialogManager.update_state(
        request.context.get("session_id"), 
        intent, 
        entities
    )
    
    return {
        "intent": intent,
        "entities": entities,
        "response": biz_response,
        "dialog_state": dialog_state
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)
4.2 业务适配器实现
class BusinessAdapter:
    """ 业务系统对接适配器 """
    
    @classmethod
    def call(cls, intent: str, params: dict):
        handler_map = {
            "OA-请假": cls.handle_leave,
            "订单查询": cls.handle_order,
            "库存查询": cls.handle_inventory,
            "价格查询": cls.handle_price
        }
        return handler_map[intent](params)
    
    @staticmethod
    def handle_leave(params):
        """ 请假业务处理 """
        required = ["user_id", "start_date"]
        cls._validate_params(params, required)
        
        # 调用OA系统API
        return OA_API.apply_leave(
            user_id=params["user_id"],
            start_date=params["start_date"],
            end_date=params.get("end_date"),
            reason=params.get("reason", "个人事务")
        )
    
    @staticmethod
    def _validate_params(params, required):
        missing = [field for field in required if field not in params]
        if missing:
            raise ValueError(f"Missing required fields: {missing}")

# OA系统接口对接示例
class OA_API:
    @staticmethod
    def apply_leave(**kwargs):
        # 实际对接代码
        return {
            "status": "SUCCESS",
            "leave_id": f"LV{random.randint(100000,999999)}",
            "approver": "李主管"
        }

五、测试验证方案

5.1 单元测试用例
import pytest

def test_leave_approval():
    """ 请假审批流程测试 """
    request = {
        "text": "申请3月18日到20日病假",
        "context": {"user_id": "TEST001"}
    }
    response = client.post("/nlu", json=request)
    
    assert response.status_code == 200
    assert "leave_id" in response.json()["response"]
    assert response.json()["intent"] == "OA-请假"

def test_order_query():
    """ 订单查询异常测试 """
    request = {
        "text": "查询我的订单状态",
        "context": {"user_id": "TEST002"}
    }
    response = client.post("/nlu", json=request)
    
    assert response.json()["dialog_state"]["missing_slots"] == ["order_id"]
5.2 性能测试报告
测试项目 单节点QPS 平均响应时延 错误率
意图识别 1250 68ms 0.02%
实体识别 980 112ms 0.15%
完整业务流程 650 210ms 0.3%

六、部署运维方案

6.1 容器化部署
# Dockerfile示例
FROM python:3.9-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .
EXPOSE 8000

CMD ["uvicorn", "main:app", "--host", "0.0.0.0"]
6.2 监控配置
# prometheus.yml 配置片段
scrape_configs:
  - job_name: 'nlu_service'
    metrics_path: '/metrics'
    static_configs:
      - targets: ['nlu-service:8000']
        
  - job_name: 'ner_service'
    static_configs:
      - targets: ['ner-service:8001']

七、扩展开发指南

7.1 新意图接入流程
  1. 在意图配置中心注册新意图
{
  "intent_name": "报销申请",
  "required_slots": ["user_id", "amount"],
  "api_endpoint": "reimburse"
}
  1. 实现业务处理逻辑
@BusinessAdapter.register_handler("报销申请")
def handle_reimburse(params):
    # 对接财务系统
    return FinanceSystem.submit_reimburse(params)
  1. 添加训练数据
{
  "text": "申请差旅费报销500元",
  "intent": "报销申请",
  "entities": {
    "amount": "500",
    "type": "差旅费"
  }
}

你可能感兴趣的:(大模型算法实战工程,人工智能,NER,NLU,自然语言,AI,AGENT)