题意:
给定n个数,这n个数是 0 ~ n - 1 的一个组合。定义a1, a2, ..., an 中满足 i < j && ai > aj的数对(ai, aj) 为逆序数对。
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
求上面n个序列中逆序数对最少的一个为多少。
思路:
曾经做过一个类似的题目:http://www.cnblogs.com/kedebug/archive/2012/12/22/2829473.html
用到的是归并排序的思想。这次利用线段树求解:
1. 初始每个区间的值为 0
2. 逐个读取数字ai,并且记录比ai大的数的个数
对于位移的情况则是,当ai移到末尾则:
1. 增加了(ai, ai-1), (ai, ai-2), ... (ai, 0) 即为ai个逆序对
2. 减少了(n-1, n-1-1), (n-1, n-1-2), ... (n-1, ai) 即为(n-1 - ai) 个逆序对
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; #define lhs l, m, rt << 1 #define rhs m + 1, r, rt << 1 | 1 const int maxn = 5010; int num[maxn]; int seg[maxn << 2]; void PushUp(int rt) {
seg[rt] = seg[rt << 1] + seg[rt << 1 | 1]; } void Build(int l, int r, int rt) { } void Update(int p, int l, int r, int rt) { if (l == r) ++seg[rt]; else { int m = (l + r) >> 1; if (p <= m)
Update(p, lhs); else
Update(p, rhs);
PushUp(rt); } } int Query(int beg, int end, int l, int r, int rt) { if (beg <= l && r <= end) return seg[rt]; int m = (l + r) >> 1; int ret = 0; if (beg <= m)
ret += Query(beg, end, lhs); if (end > m)
ret += Query(beg, end, rhs); return ret; } int main() { int n; while (scanf("%d", &n) != EOF) { int sum = 0;
memset(seg, 0, sizeof(seg)); for (int i = 0; i < n; ++i) {
scanf("%d", &num[i]);
sum += Query(num[i], n - 1, 0, n - 1, 1);
Update(num[i], 0, n - 1, 1); } int ret = sum; for (int i = 0; i < n; ++i) {
sum += (n - 1 - num[i]) - num[i];
ret = min(ret, sum); }
printf("%d\n", ret); } }