融合yolov8算法

如果您已经有了能够分别运行YOLOv8和OpenPCDet PointPillars的ROS工作空间,并且每个都能单独实现实时检测,那么融合它们的最佳方式是创建一个新的融合节点,该节点订阅两个系统的检测结果并执行融合算法。以下是详细步骤:

1. 创建融合包

首先,您需要创建一个新的ROS包来处理融合功能:

# 假设您想在一个新的工作空间中创建融合节点
mkdir -p ~/fusion_ws/src
cd ~/fusion_ws/src
catkin_create_pkg detection_fusion std_msgs sensor_msgs geometry_msgs roscpp rospy message_generation visualization_msgs
cd detection_fusion
mkdir -p scripts msg launch config

2. 定义融合消息类型

~/fusion_ws/src/detection_fusion/msg目录中创建以下消息文件:

Yolo2DBox.msg

Header header
string class_name
float32 confidence
float32[4] bbox  # [x_min, y_min, x_max, y_max]

Pillars3DBox.msg

Header header
string class_name
float32 confidence
geometry_msgs/Point position
geometry_msgs/Vector3 dimensions
geometry_msgs/Quaternion orientation

FusedBox.msg

Header header
Yolo2DBox box_2d
Pillars3DBox box_3d
float32 fusion_confidence

3. 修改CMakeLists.txt和package.xml

package.xml



  detection_fusion
  0.0.0
  Fusion of YOLOv8 and PointPillars detections
  Your Name
  MIT

  catkin
  roscpp
  rospy
  std_msgs
  sensor_msgs
  geometry_msgs
  visualization_msgs
  message_generation
  
  roscpp
  rospy
  std_msgs
  sensor_msgs
  geometry_msgs
  visualization_msgs
  message_runtime

CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)
project(detection_fusion)

find_package(catkin REQUIRED COMPONENTS
  roscpp
  rospy
  std_msgs
  sensor_msgs
  geometry_msgs
  visualization_msgs
  message_generation
)

add_message_files(
  FILES
  Yolo2DBox.msg
  Pillars3DBox.msg
  FusedBox.msg
)

generate_messages(
  DEPENDENCIES
  std_msgs
  geometry_msgs
)

catkin_package(
  CATKIN_DEPENDS
  roscpp
  rospy
  std_msgs
  geometry_msgs
  visualization_msgs
  message_runtime
)

include_directories(
  ${catkin_INCLUDE_DIRS}
)

4. 创建融合节点

~/fusion_ws/src/detection_fusion/scripts中创建fusion_node.py

#!/usr/bin/env python3
import rospy
import numpy as np
import message_filters
import tf
from geometry_msgs.msg import Point, Vector3, Quaternion
from visualization_msgs.msg import MarkerArray, Marker
from std_msgs.msg import ColorRGBA, Header

# 根据您现有ROS环境中的消息类型导入
# 这里假设您的YOLOv8和PointPillars检测结果使用的消息类型
# 根据实际情况修改这些导入
from your_yolo_package.msg import YoloDetection   # 修改为您的YOLOv8消息类型
from your_pointpillars_package.msg import PointPillarsDetection  # 修改为您的PointPillars消息类型

# 导入新定义的融合消息
from detection_fusion.msg import Yolo2DBox, Pillars3DBox, FusedBox

class DetectionFusion:
    def __init__(self):
        rospy.init_node('detection_fusion_node', anonymous=True)
        
        # 加载标定参数
        self.load_calibration()
        
        # 创建订阅者
        self.yolo_sub = message_filters.Subscriber('/yolo/detections', YoloDetection)  # 修改为您的YOLOv8检测结果话题
        self.pillars_sub = message_filters.Subscriber('/pointpillars/detections', PointPillarsDetection)  # 修改为您的PointPillars检测结果话题
        
        # 时间同步器
        self.ts = message_filters.ApproximateTimeSynchronizer(
            [self.yolo_sub, self.pillars_sub], 10, 0.1)
        self.ts.registerCallback(self.fusion_callback)
        
        # 创建发布者
        self.fusion_pub = rospy.Publisher('/fusion/detections', FusedBox, queue_size=10)
        self.vis_pub = rospy.Publisher('/fusion/visualization', MarkerArray, queue_size=10)
        
        rospy.loginfo("Detection fusion node initialized")
    
    def load_calibration(self):
        

你可能感兴趣的:(python)