- 什么是智能体(Agent)?
用什么都重名
大模型相关人工智能Agent大模型
目录前言一、大语言模型1.什么是大语言模型?2.应用领域二、什么是Agent三、Agent核心特点1.感知能力2.规划能力3.行动能力4.记忆能力总结前言目前智能体市场正处于快速发展阶段,呈现出市场规模增长迅猛、应用领域广泛、竞争格局多元化等特点。基于此,让我们一起来学习一下何为智能体。一、大语言模型1.什么是大语言模型?大语言模型是一种采用大量数据进行训练的人工智能模型,主要用于理解和生成自然语
- 当争论者还在讨论AI的边界,实践者早已用这些技术解决实际问题
渡难繁辰
人工智能拥抱AI人工智能ai
——普通人参与AI革命的关键路径一、AI应用五大核心组件(通俗拆解版)1️⃣LLM:AI的「决策核心」本质:大型语言模型(如DeepSeek、通义千问),具备语言理解与生成能力能力边界:✅处理文本类任务(写作/翻译/摘要)❌无法获取实时信息(如最新股价)⚠️存在“幻觉”(虚构信息)风险案例对比:问:“鲁迅和周树人什么关系?”基础LLM:“两位都是著名作家”(错误)增强版LLM:“周树人是鲁迅本名”
- AI“大航海”时代:企业人力资源的AI-HR实践与效能提升策略
在数字化浪潮的推动下,人工智能(AI)正以前所未有的速度渗透各行各业,人力资源管理(HR)领域也不例外。AI技术的引入与应用落地,不仅提升HR管理效率,更在深层次上带来人力资源运作模式的变革。什么是AI-HR所谓AI-HR,是指将人工智能技术应用于人力资源管理,并通过机器学习、自然语言处理、数据挖掘等技术,优化招聘、培训、绩效评估、员工关系等人力资源各个业务模块。近年来,随着AI技术的成熟和普及,
- PagedAttention和Continuous Batching
流浪大人
大模型深度学习人工智能机器学习
PagedAttention是什么PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。工作原理传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度
- Spring Boot + 本地部署大模型实现:安全性与可靠性保障
代码老y
springbootbootstrap后端
在将大语言模型集成到SpringBoot应用中时,安全性和可靠性是两个关键因素。本地部署的大模型虽然提供了强大的功能,但也可能带来一些安全风险,如数据泄露、模型被恶意利用等。本文将介绍如何在SpringBoot应用中保障本地部署大模型的安全性和可靠性,确保应用的稳定运行。一、安全性保障(一)数据加密传输加密:确保模型生成的结果在传输过程中被加密,防止数据在传输过程中被窃取。可以使用HTTPS协议来
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- MCP客户端请求MCP服务器资源的Python SDK实现
AI天才研究院
计算AI人工智能与大数据Python实战python开发语言ai服务器
我将为您提供一个详细的指南,说明如何使用PythonSDK让MCP客户端请求MCP服务器的资源。MCP客户端请求MCP服务器资源的PythonSDK实现核心概念ModelContextProtocol(MCP)是一个标准化协议,允许应用程序以标准化的方式为大语言模型(LLM)提供上下文,将提供上下文的关注点与实际的LLM交互分离。MCP中的资源(Resources)是一种核心原语,允许服务器暴露数
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 「论文导读」LLM高效推理与模型量化
雷羿 LexChien
prompt人工智能LLM论文阅读
1.论文背景作者:HugoTouvron等人,來自MetaAI来源:arXiv:2302.13971,2023年2月主题:介绍LLaMA系列模型(LLaMA-7B、13B、33B、65B),专为研究用途设计,强调高效能与低资源需求的语言模型推理。论文探讨如何通过优化训练数据、模型架构和推理技术,在有限硬体资源(如单一GPU或CPU)上实现高效推理。学术背景:随着大型语言模型(LLM)如GPT-3的
- AlphaEvolve:谷歌的算法进化引擎 | 从数学证明到芯片设计的AI自主发现新纪元
大千AI助手
人工智能Python#OTHER算法人工智能深度学习AlphaEvolvegooglegemini
AlphaEvolve:谷歌的算法进化引擎|从数学证明到芯片设计的AI自主发现新纪元——结合大语言模型与进化计算,重塑科学发现与工程优化的通用智能体本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!⚙️一、核心定义与技术架构AlphaEvolve是由谷歌DeepMind开发的通用科学AI智能体,其核心
- vLLM 的逻辑与运作机制
a李兆洋
大模型推理
vLLM的逻辑与运作机制vLLM作为一种高效的推理框架,逐渐成为研究和应用的热点。vLLM的核心在于如何高效地管理和调度模型推理任务,以最大化利用计算资源并提高推理效率。一、vLLM是如何运作的?vLLM是一种虚拟化的大语言模型推理框架,它通过高效的资源管理和调度机制,使得大规模语言模型的推理任务能够更加高效地运行。vLLM的核心逻辑是LLMEngine,它负责处理和调度推理请求,管理KVcach
- 【深度学习新浪潮】什么是上下文长度?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能LLM语言模型大模型模型优化上下文长度
大型语言模型(LLM)的上下文长度是指模型在处理当前输入时能够有效利用的历史文本长度,通常以token(如单词、子词或标点)为单位衡量。例如,GPT-4支持128Ktoken的上下文,而Llama4Scout甚至达到了10Mtoken的惊人规模。这一指标直接影响模型在长文档理解、多轮对话等复杂任务中的表现。一、上下文长度的合理范围上下文长度的选择需结合具体应用场景:日常对话:通常需要8K–32Kt
- Manus AI与多语言手写识别
tonngw
人工智能
技术文章大纲:ManusAI与多语言手写识别引言手写识别技术的发展背景与市场需求ManusAI的定位与核心技术优势多语言场景下的挑战与机遇ManusAI的核心技术架构基于深度学习的端到端手写识别模型多模态数据融合(笔迹压力、书写轨迹等)自适应语言模型与字符集扩展机制多语言手写识别的关键技术非拉丁语系(中文、阿拉伯语等)的笔迹特征提取小样本语言数据的迁移学习策略上下文感知与语法纠错在低资源语言中的应
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 大模型开源与国产化突围:技术路径与产业机遇深度解析
梦玄海
开源架构golang开发语言后端大数据
引言:大模型时代的双轨竞速2023年全球大语言模型(LLM)参数量突破万亿级,GPT-4、LLaMA等模型引领技术浪潮。中国在这场竞赛中面临双重命题:既要融入全球开源生态,又要构建自主可控的技术体系。本文将从技术架构、训练范式、生态建设三个维度,深入剖析大模型开源与国产化的突围路径。一、全球开源格局与中国大模型现状1.1国际开源生态的演进特征技术民主化加速:LLaMA-2(700亿参数)、BLOO
- 多角色AI Agent:基于LLM的虚拟角色扮演系统
AI天才研究院
AI人工智能与大数据人工智能ai
多角色AIAgent:基于LLM的虚拟角色扮演系统关键词多角色AIAgentLargeLanguageModel(LLM)虚拟角色扮演系统人工智能自然语言处理程序设计摘要本文旨在探讨多角色AIAgent的基础知识以及其如何在虚拟角色扮演系统中发挥作用。我们将首先介绍多角色AIAgent的概念、历史背景和基本原理。随后,我们将深入探讨LLM(大语言模型)在虚拟角色扮演系统中的应用,包括其工作原理、核
- FastMCP:用于构建MCP服务器的开源Python框架
NetX行者
AI编程服务器开源python
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
SugarPPig
人工智能人工智能
这个问题触及了现代AI智能体(Agent)构建的两种核心思想。简单来说,ReAct是一种“调用专家”的模式,而强化学习(RL)是一种“从零试错”的模式。为了让你更清晰地理解,我们从一个生动的比喻开始,然后进行详细的对比。一个生动的比喻想象一下你要完成一项复杂的任务,比如“策划一场完美的生日派对”。ReAct的方式(像一位经验丰富的活动策划师)你是一位知识渊博的专家(大语言模型LLM)。你首先会思考
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- 【文献精读笔记】Explainability for Large Language Models: A Survey (大语言模型的可解释性综述)(五)
百万年薪天才少女
人工智能人工智能机器学习深度学习
****非斜体正文为原文献内容(也包含笔者的补充),灰色块中是对文章细节的进一步详细解释!五、解释评估(ExplanationEvaluation)在前面的章节中,我们介绍了不同的解释技术和它们的用途,但评估它们如何忠实地反映模型的推理过程仍然是一个挑战。我们将评估大致分为两类:传统微调范式的局部解释评估(第5.1节)和提示范式中自然语言CoT解释的评估(第5.2节)。评估的两个关键维度是对人类的
- 深入详解 AI 与深度学习:从零开始掌握 BERT 模型架构
拉不拉斯AICoding
技术探索人工智能深度学习bert
深入详解AI与深度学习:从零开始掌握BERT模型架构引言在自然语言处理(NLP)领域,BERT(BidirectionalEncoderRepresentationsfromTransformers)是近年来最具影响力的模型之一。它通过双向上下文理解彻底改变了NLP任务的处理方式。本文将从基础概念到核心原理、应用场景和实践技巧,深入浅出地讲解BERT,帮助初学者快速掌握这一技术。一、BERT的核心
- 提示词工程在实体关系抽取中的创新
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
1.5概念结构与核心要素组成在深入探讨提示词工程在实体关系抽取中的应用之前,我们需要对其概念结构与核心要素组成有一个清晰的理解。这一部分将介绍提示词工程的基本框架,以及实体关系抽取的关键技术。提示词工程的基本框架提示词工程(PromptEngineering)是指利用人工智能技术和自然语言处理方法,设计并优化用于训练语言模型的输入提示(prompt),以达到特定任务目标的过程。其核心框架包括以下几
- Transformer模型架构深度讲解
Transformer是一种在自然语言处理(NLP)和深度学习中非常重要的模型架构。它首次由Vaswani等人于2017年提出,主要应用于序列到序列的任务(如机器翻译、文本生成、摘要生成等)。Transformer模型与传统的RNN(循环神经网络)和LSTM(长短时记忆网络)不同,它不依赖于时间步的顺序处理,而是完全基于“注意力机制”进行计算,这使得它在训练速度、并行化能力和长期依赖问题的处理上具
- 大语言模型与增强现实:空间计算时代的AI原生应用
Agentic AI人工智能与大数据
CS语言模型ar空间计算ai
大语言模型与增强现实:空间计算时代的AI原生应用关键词:大语言模型(LLM)、增强现实(AR)、空间计算、AI原生应用、多模态交互、具身智能、虚实融合摘要:当“能对话的AI大脑”(大语言模型)遇到“能叠加虚拟世界的魔法眼镜”(增强现实),一场空间计算时代的革命正在发生。本文将带你一步步拆解大语言模型与AR的“强强联合”:从基础概念到技术原理,从真实案例到未来趋势,用“给小学生讲故事”的方式,讲清这
- AI人工智能浪潮中,GPT的技术优势凸显
AI学长带你学AI
人工智能gptai
AI人工智能浪潮中,GPT的技术优势凸显关键词:人工智能、GPT、自然语言处理、深度学习、Transformer、大语言模型、技术优势摘要:本文深入探讨了在人工智能浪潮中GPT(GenerativePre-trainedTransformer)系列模型的技术优势。我们将从GPT的核心架构出发,分析其独特的技术特点,包括自注意力机制、预训练-微调范式、零样本学习能力等。通过与传统NLP方法的对比,揭
- 大语言模型的具身化——LLM-based Agents实战
apollowin123
人工智能语言模型深度学习
1.概述1.1Agent是什么长期以来,研究者们一直在追求与人类相当、乃至超越人类水平的通用人工智能(ArtificialGeneralIntelligence,AGI)。早在1950年代,AlanTuring就将「智能」的概念扩展到了人工实体,并提出了著名的图灵测试。这些人工智能实体通常被称为——代理(Agent)。「代理」这一概念起源于哲学,描述了一种拥有欲望、信念、意图以及采取行动能力的实体
- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- Tuning Language Models by Proxy
樱花的浪漫
对抗生成网络与动作识别强化学习因果推断大模型与智能体人工智能机器学习深度学习自然语言处理计算机视觉神经网络
TuningLanguageModelsbyProxyhttps://arxiv.org/html/2401.08565v41.概述尽管大型预训练语言模型的通用能力越来越强,但它们仍然可以从额外的微调中受益,以更好地实现所需的行为。例如,它们通常被微调以遵循指令(Ouyang等人,2022年)、特定的兴趣领域(Gururangan等人,2020年)或特定任务(Raffel等人,2020年)。然而,
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C