- 【PyTorch】PyTorch中torch.nn模块的卷积层
PyTorch深度学习总结第七章PyTorch中torch.nn模块的卷积层文章目录PyTorch深度学习总结前言一、torch.nn模块1.模块的基本组成部分1.1层(Layers)1.2损失函数(LossFunctions)1.3激活函数(ActivationFunctions)2.自定义神经网络模型3.模块的优势二、torch.nn模块的卷积层1.卷积的定义2.常见的卷积层3.卷积层的重要参
- 【PyTorch】PyTorch中torch.nn模块的循环层
PyTorch深度学习总结第九章PyTorch中torch.nn模块的循环层文章目录PyTorch深度学习总结前言一、循环层1.简单循环层(RNN)2.长短期记忆网络(LSTM)3.门控循环单元(GRU)4.双向循环层二、循环层参数1.输入维度相关参数2.隐藏层相关参数3.其他参数三、函数总结前言上文介绍了PyTorch中介绍了池化和torch.nn模块中的池化层函数,本文将进一步介绍torch.
- 【PyTorch】PyTorch中torch.nn模块的池化层
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第八章PyTorch中torch.nn模块的池化层文章目录PyTorch深度学习总结前言一、池化1.定义2.目的3.常见类型4.实际效果二、池化层1.常用的池化层2.池化层的参数2.1最大池化层(MaxPooling)和平均池化层(AveragePooling)2.2自适应最大池化层(AdaptiveMaxPooling)和自适应平均池化层(AdaptiveAverage
- 鸟类识别与分类相关数据集
Bryan Ding
分类数据挖掘人工智能
随着深度学习技术的快速发展,其在图像识别、语音识别等领域取得了显著的成果。鸟类识别作为生态学研究的重要内容,对于物种多样性保护、生态环境监测等领域具有深远的影响。将深度学习技术应用于鸟类识别,有望提高识别的准确性和效率,为鸟类学研究提供有力支持。本文综述了近年来深度学习在鸟类识别中的应用进展,包括基于图像和声音的鸟类识别系统,分析了其技术框架、实现方法以及在实际应用中的效果。通过对相关文献的梳理,
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- 未来已来:美颜SDK如何通过深度学习实现个性化美颜形象?
美狐美颜SDK开放平台
美颜sdk直播美颜sdk视频美颜sdk深度学习人工智能直播美颜sdk美颜sdk美颜api视频美颜sdk直播美颜工具
你有没有这样的时刻:打开相机滤镜,调了半天,依旧找不到最适合自己的美颜效果?或是刷短视频时,惊艳于博主的“自然”颜值,却又发现自己的滤镜总显得太“假”?这背后,其实藏着一个越来越热门的技术关键词——个性化美颜,而它的核心驱动力,正是深度学习。从“千人一脸”到“千人千面”,美颜SDK走进了一个真正智能的时代。一、美颜SDK,从滤镜到AI的技术跃迁美颜SDK是一类集成在App中,用于图像实时处理和优化
- 前沿FPGA开发:技术与管理的有效结合
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据fpga开发ai
前沿FPGA开发:技术与管理的有效结合关键词:FPGA开发、技术管理、前沿技术、项目管理、资源优化摘要:本文深入探讨了前沿FPGA开发中技术与管理有效结合的重要性和具体方法。在FPGA技术不断发展的今天,单纯依靠技术或管理都难以实现项目的成功。通过将先进的FPGA技术与科学的管理理念相结合,能够提高开发效率、优化资源配置、降低成本并提升产品质量。文章详细阐述了FPGA开发的核心概念、相关算法原理、
- 2024最新 动物识别数据集(12-02已更新)
数据猎手小k
机器学习自然语言处理人工智能
动物识别数据集是用于训练和评估动物识别模型的集合,这些数据集通常包含多种动物的图像或视频,以及对应的标签信息。它们在生物多样性监测、生态研究、农业和城市安全管理等领域发挥着重要作用。随着深度学习技术的发展,动物识别数据集的处理方式、算法逻辑和模型搭建与训练流程也在不断进步,以提高识别的准确性和效率。一、背景意义动物识别技术的发展对于生物多样性保护、生态学研究、农业和野生动物保护等多个领域具有重要意
- Python 领域 vllm 优化模型推理速度的方法
Python编程之道
Python编程之道python开发语言ai
Python领域vLLM优化模型推理速度的方法关键词:Python、vLLM、模型推理速度、优化方法、推理性能摘要:本文聚焦于Python领域中vLLM对模型推理速度的优化方法。首先介绍了相关背景知识,包括vLLM的概念和优化模型推理速度的重要性。接着阐述了vLLM的核心概念与架构,详细分析了其优化的原理。通过具体的Python代码展示了核心算法原理及操作步骤,同时给出了相应的数学模型和公式进行理
- Transformer模型架构深度讲解
Transformer是一种在自然语言处理(NLP)和深度学习中非常重要的模型架构。它首次由Vaswani等人于2017年提出,主要应用于序列到序列的任务(如机器翻译、文本生成、摘要生成等)。Transformer模型与传统的RNN(循环神经网络)和LSTM(长短时记忆网络)不同,它不依赖于时间步的顺序处理,而是完全基于“注意力机制”进行计算,这使得它在训练速度、并行化能力和长期依赖问题的处理上具
- 【linux】ssh 远程执行命令自动输入密码方式
檀越@新空间
s5Linux学习linuxssh服务器
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨欢迎订阅本专栏✨✨博客目录一.自动输入密码二.sshpass方式1.安装sshpass2.源码下载3.安装过程4.验证三.expect方式1.脚本2.执行前些天发现了一个巨牛的人工智能
- c++11 标准模板(STL)(std::locale)(一)
繁星璀璨G
本地化库c++标准库模板STLlocale本地环境
用以封装文化差异的多态刻面的集合classlocale;std::locale类型对象是不可变平面的不可变索引集。C++输入/输出库的每个流对象与一个std::locale对象关联,并用其平面分析及格式化所有数据。另外,locale对象与每个std::basic_regex对象关联。locale对象亦可在标准容器和算法中用作进行字符串对照的谓词,而且能被直接访问,以获得或修改其所保有的平面。C++
- 【牛客刷题】实现返回最大的不大于n的完美数的函数
字节卷动
牛客刷题java算法牛客
文章目录一、题目介绍1.1题目描述1.2输入描述1.3输出描述1.4示例二、解题思路2.1核心算法设计2.2性能优化关键2.3算法流程图三、解法实现3.1解法一:借位+贪心3.1.1初级版本分析3.2解法二:优化版(推荐)3.2.1优化版本分析四、总结与拓展4.1关键优化技术4.2进阶优化方向4.3应用场景扩展一、题目介绍1.1题目描述给定一个正整数n,定义一个完美数为每一位数字只包含1、2、3的
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- AlphaGPT通过国家AIGC生成式算法备案,为法律专业人士提供更加合规可靠的ai技术支持
资讯分享周
AIGC人工智能
在当前互联网信息时代,大模型算法已成各行业不可或缺的核心,不仅改善生活和工作,也在创新中展现巨大潜力。然而,随着算法应用的普及,如何合规管理算法,保护用户权益和隐私,确保公正运行,成为重要议题。日前,国内领先的法律科技企业iCourt宣布,其自主研发的法律垂类领域大模型AlphaGPT成功通过国家生成式模型深度学习合成算法备案。本次备案的通过,彰显了iCourt在法律AI领域有迈向了一个新的里程碑
- C++11标准库算法:深入理解std::none_of
码事漫谈
c++11c++算法java
文章目录函数原型与核心语义模板参数约束实现原理与标准库设计思想与all_of/any_of的逻辑关系应用场景1.输入验证2.状态检查3.与函数对象结合4.替代传统循环性能特性与注意事项复杂度保证迭代器选择建议谓词设计要点C++标准演进与扩展总结C++11标准为STL带来了诸多革命性改进,其中算法库的扩展尤为引人注目。std::none_of作为新增的三大逻辑判断算法之一(与std::all_of、
- 【AIGC时代】OneCode前端框架入门指南:从环境搭建到第一个应用
低代码老李
OneCode实战低代码软件行业学习前端框架
在人工智能生成内容(AIGC)技术飞速发展的今天,前端开发领域正经历着前所未有的变革。AI工具能够批量生成代码,但如何将这些自动生成的代码转化为可维护、高质量的生产级应用,成为开发者面临的核心挑战。OneCode框架凭借其独特的设计理念,在这一背景下展现出显著优势,本文将带您从零开始,快速掌握OneCode框架的使用方法。一、AIGC背景下选择OneCode框架的四大理由AIGC工具的普及为前端开
- 三种方法详解最长回文子串问题
文章目录题目描述方法一:动态规划状态转移方程:状态转移公式:代码实现:使用滚动数组优化空间方法二:中心扩展法核心思想算法步骤代码实现复杂度分析方法三:马拉车算法算法思路代码实现复杂度分析三种方法对比回文子串是字符串处理中的经典问题,本文将通过动态规划、中心扩展和马拉车算法三种方法,详细解析如何高效求解最长回文子串,并对比各方法的优劣。题目描述方法一:动态规划我们定义一个二维布尔数组dp,其中:dp
- 力扣 经典算法之爬楼梯
今天来用两种的方法解一道题题目如下:假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?先分析题目吧,我觉得它在考我数学思维,解数学题嘛,一步步来吧。n=1:走1步,只能有1种解法n=2:可以走1+1步,也可以直接走2步,2种解法n=3:可以走的方式有:1+1+1,1+2,2+1,共3种n=4:走法有1+1+1+1,1+2+1,2+1+1,1+1
- 【LeetCode 热题 100】54. 螺旋矩阵
xumistore
LeetCodeleetcode矩阵算法java
Problem:54.螺旋矩阵题目:给你一个m行n列的矩阵matrix,请按照顺时针螺旋顺序,返回矩阵中的所有元素。文章目录整体思路完整代码时空复杂度时间复杂度:O(M*N)空间复杂度:O(1)(不考虑输出列表)整体思路这段代码旨在解决一个经典的矩阵问题:螺旋矩阵(SpiralMatrix)。问题要求按照顺时针螺旋的顺序,返回矩阵中的所有元素。该算法采用了一种非常直观的“路径模拟”策略。它模拟一个
- 算法45:动态规划专练(力扣70: 爬楼梯 力扣746:使用最小花费爬楼梯)
适合java程序员的算法
算法算法动态规划leetcode
力扣70题:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶分析:1.如果有1个楼梯,那只能走1步登顶。1中方法2.如果有2个楼梯。a.我们可以一次走一
- 区块链重塑域名商业版图:技术革新、市场机遇与未来图景
boyedu
区块链终端域名区块链终端域名
在Web3.0时代,区块链技术正以去中心化、抗审查、身份绑定等特性重构域名系统,不仅解决了传统DNS的安全漏洞与中心化风险,更开创了数字身份、品牌资产化等全新商业模式。以下从技术革新、市场现状、挑战应对及典型案例四个维度,深入剖析区块链域名的商业潜力。一、技术革新:区块链如何重构域名基础设施?去中心化根域名系统Handshake协议:通过UTXO模型与SHA3算法构建无需许可的域名注册体系,其HN
- SEO优化技巧深度解析:从算法逻辑到实战策略的全链路突破
boyedu
网站建设网站建设网站运营网站架构
第一章搜索引擎算法逻辑:SEO优化的底层密码1.1算法进化史:从关键词匹配到意图理解搜索引擎算法经历了从简单关键词匹配到复杂语义理解的跨越式发展。早期算法以PageRank为核心,通过分析网页间链接关系评估权威性。随着Hummingbird算法的推出,搜索引擎开始解析自然语言,BERT算法进一步实现上下文语义理解。当前算法已形成多维度评估体系,涵盖内容质量、用户体验、权威性建设等层面。以Googl
- 香港推出的稳定币和数字货币的区别
boyedu
加密货币数字货币香港稳定币加密货币虚拟货币
香港推出的稳定币与数字货币在定义、发行主体、监管框架、使用场景及战略定位上存在显著差异。以下为具体解析:一、定义与性质的核心区别稳定币定义:与法定货币(如美元、港元)或资产挂钩的加密货币,旨在通过抵押或算法维持价值稳定。示例:京东币链科技测试的稳定币锚定港元,用于跨境支付;蚂蚁数科计划发行与美元挂钩的稳定币。特点:保留加密货币的去中心化特性,但通过储备资产(如现金、国债)减少价格波动。数字货币定义
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 云原生API Gateway:连接微服务的桥梁
AI云原生与云计算技术学院
云原生gateway微服务ai
云原生APIGateway:连接微服务的桥梁关键词:云原生、API网关、微服务架构、服务治理、流量管理、服务网格、DevOps摘要:本文深入探讨云原生环境下API网关的核心原理与实践应用,解析其在微服务架构中作为统一入口的关键作用。通过详细阐述API网关的核心功能、技术架构、算法原理及数学模型,结合Kubernetes实战案例演示流量管理、安全防护、服务编排等核心能力。同时分析典型应用场景,推荐前
- 人工智能驱动下的可再生能源气象预测:构建绿色能源时代的新大脑
一ge科研小菜菜
人工智能人工智能能源
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、背景:新能源快速发展下的预测焦虑为应对气候变化和实现碳中和目标,全球能源系统正在加速从“化石主导”向“可再生主导”过渡。风能、太阳能等清洁能源已成为未来能源结构的关键支柱。根据国际能源署(IEA)预测,到2050年,全球超70%的电力将来自可再生能源。然而,可再生能源具有显著的**“天气依赖性”和“波动不确定性”**,风速、光照、温度、湿度等
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D